예제 #1
0
        public void ValidateCumulativeDistribution(double dof, double x)
        {
            var    n        = new Chi(dof);
            double expected = SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0);

            Assert.AreEqual(expected, n.CumulativeDistribution(x));
            Assert.AreEqual(expected, Chi.CDF(dof, x));
        }
예제 #2
0
        public void ValidateCumulativeDistribution(double dof, double x, double expected)
        {
            var chi = new Chi(dof);

            Assert.That(chi.CumulativeDistribution(x), Is.EqualTo(expected).Within(13));
            Assert.That(Chi.CDF(dof, x), Is.EqualTo(expected).Within(13));
            //double expected = SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0);
            //Assert.AreEqual(expected, n.CumulativeDistribution(x));
            //Assert.AreEqual(expected, Chi.CDF(dof, x));
        }
        /// <summary>
        /// Run example
        /// </summary>
        /// <a href="http://en.wikipedia.org/wiki/Chi_distribution">Chi distribution</a>
        public void Run()
        {
            // 1. Initialize the new instance of the Chi distribution class with parameter dof = 1.
            var chi = new Chi(1);

            Console.WriteLine(@"1. Initialize the new instance of the Chi distribution class with parameter DegreesOfFreedom = {0}", chi.DegreesOfFreedom);
            Console.WriteLine();

            // 2. Distributuion properties:
            Console.WriteLine(@"2. {0} distributuion properties:", chi);

            // Cumulative distribution function
            Console.WriteLine(@"{0} - Сumulative distribution at location '0.3'", chi.CumulativeDistribution(0.3).ToString(" #0.00000;-#0.00000"));

            // Probability density
            Console.WriteLine(@"{0} - Probability density at location '0.3'", chi.Density(0.3).ToString(" #0.00000;-#0.00000"));

            // Log probability density
            Console.WriteLine(@"{0} - Log probability density at location '0.3'", chi.DensityLn(0.3).ToString(" #0.00000;-#0.00000"));

            // Entropy
            Console.WriteLine(@"{0} - Entropy", chi.Entropy.ToString(" #0.00000;-#0.00000"));

            // Largest element in the domain
            Console.WriteLine(@"{0} - Largest element in the domain", chi.Maximum.ToString(" #0.00000;-#0.00000"));

            // Smallest element in the domain
            Console.WriteLine(@"{0} - Smallest element in the domain", chi.Minimum.ToString(" #0.00000;-#0.00000"));

            // Mean
            Console.WriteLine(@"{0} - Mean", chi.Mean.ToString(" #0.00000;-#0.00000"));

            // Mode
            Console.WriteLine(@"{0} - Mode", chi.Mode.ToString(" #0.00000;-#0.00000"));

            // Variance
            Console.WriteLine(@"{0} - Variance", chi.Variance.ToString(" #0.00000;-#0.00000"));

            // Standard deviation
            Console.WriteLine(@"{0} - Standard deviation", chi.StdDev.ToString(" #0.00000;-#0.00000"));

            // Skewness
            Console.WriteLine(@"{0} - Skewness", chi.Skewness.ToString(" #0.00000;-#0.00000"));
            Console.WriteLine();

            // 3. Generate 10 samples of the Chi distribution
            Console.WriteLine(@"3. Generate 10 samples of the Chi distribution");
            for (var i = 0; i < 10; i++)
            {
                Console.Write(chi.Sample().ToString("N05") + @" ");
            }

            Console.WriteLine();
            Console.WriteLine();

            // 4. Generate 100000 samples of the Chi(1) distribution and display histogram
            Console.WriteLine(@"4. Generate 100000 samples of the Chi(1) distribution and display histogram");
            var data = new double[100000];

            for (var i = 0; i < data.Length; i++)
            {
                data[i] = chi.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 5. Generate 100000 samples of the Chi(2) distribution and display histogram
            Console.WriteLine(@"5. Generate 100000 samples of the Chi(2) distribution and display histogram");
            chi.DegreesOfFreedom = 2;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = chi.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
            Console.WriteLine();

            // 6. Generate 100000 samples of the Chi(5) distribution and display histogram
            Console.WriteLine(@"6. Generate 100000 samples of the Chi(5) distribution and display histogram");
            chi.DegreesOfFreedom = 5;
            for (var i = 0; i < data.Length; i++)
            {
                data[i] = chi.Sample();
            }

            ConsoleHelper.DisplayHistogram(data);
        }
예제 #4
0
 public void ValidateCumulativeDistribution(
     [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity)] double dof, 
     [Values(0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity, 0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity, 0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity, 0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity)] double x)
 {
     var n = new Chi(dof);
     Assert.AreEqual(SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0), n.CumulativeDistribution(x));
 }
예제 #5
0
 public void ValidateCumulativeDistribution(double dof, double x)
 {
     var n = new Chi(dof);
     Assert.AreEqual<double>(SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0), n.CumulativeDistribution(x));
 }
        public void ValidateCumulativeDistribution(double dof, double x)
        {
            var n = new Chi(dof);

            Assert.AreEqual <double>(SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0), n.CumulativeDistribution(x));
        }
예제 #7
0
파일: ChiTests.cs 프로젝트: wibble82/mmbot
        public void ValidateCumulativeDistribution(
            [Values(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity, Double.PositiveInfinity)] double dof,
            [Values(0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity, 0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity, 0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity, 0.0, 0.1, 1.0, 5.5, 110.1, Double.PositiveInfinity)] double x)
        {
            var n = new Chi(dof);

            Assert.AreEqual(SpecialFunctions.GammaLowerIncomplete(dof / 2.0, x * x / 2.0) / SpecialFunctions.Gamma(dof / 2.0), n.CumulativeDistribution(x));
        }