예제 #1
0
        private Bitmap ProcessImage(SequenceReader reader)
        {
            // set up the face model
            String root      = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, @"..\..\");
            var    faceModel = new FaceModelParameters(root, false);

            faceModel.optimiseForImages();

            // set up a face detector and a landmark detector
            var faceDetector     = new FaceDetector();
            var landmarkDetector = new CLNF(faceModel);

            // read the image from the sequence reader
            var frame     = new RawImage(reader.GetNextImage());
            var grayFrame = new RawImage(reader.GetCurrentFrameGray());

            // detect faces
            var faces       = new List <Rect>();
            var confidences = new List <double>();

            faceDetector.DetectFacesHOG(faces, grayFrame, confidences);

            // detect landmarks
            var landmarks = new List <List <Tuple <double, double> > >();

            foreach (var face in faces)
            {
                landmarkDetector.DetectFaceLandmarksInImage(grayFrame, face, faceModel);
                var points = landmarkDetector.CalculateAllLandmarks();
                landmarks.Add(points);
            }

            // draw rectangles and confidence values on image
            var image = frame.ToBitmap();

            using (Graphics g = Graphics.FromImage(image))
            {
                int index = 0;
                var pen   = new System.Drawing.Pen(System.Drawing.Color.LightGreen, 4);
                var pen2  = new System.Drawing.Pen(System.Drawing.Color.Red, 4);
                var font  = new Font(FontFamily.GenericSansSerif, 30);
                foreach (var face in faces)
                {
                    g.DrawRectangle(pen, (int)face.X, (int)face.Y, (int)face.Width, (int)face.Height);
                    g.DrawString($"{confidences[index]:0.00}", font, Brushes.Black, (int)face.X + 36, (int)face.Y - 36);

                    // draw landmark points
                    foreach (var p in landmarks[index])
                    {
                        g.DrawRectangle(pen2, new Rectangle((int)p.Item1, (int)p.Item2, 4, 4));
                    }
                    index++;
                }
            }

            return(image);
        }
        private Bitmap ProcessImage(SequenceReader reader)
        {
            // set up the face model
            var root      = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, @"..\..\");
            var faceModel = new FaceModelParameters(root, false);

            faceModel.optimiseForImages();

            // set up a face detector, a landmark detector, and a face analyser
            var faceDetector     = new FaceDetector();
            var landmarkDetector = new CLNF(faceModel);
            var faceAnalyser     = new FaceAnalyserManaged(root, true, 0);

            // read the image from the sequence reader
            var frame     = new RawImage(reader.GetNextImage());
            var grayFrame = new RawImage(reader.GetCurrentFrameGray());

            // detect faces
            var faces       = new List <Rect>();
            var confidences = new List <double>();

            faceDetector.DetectFacesHOG(faces, grayFrame, confidences);

            // detect landmarks
            var image = frame.ToBitmap();

            foreach (var face in faces)
            {
                landmarkDetector.DetectFaceLandmarksInImage(grayFrame, face, faceModel);
                var points = landmarkDetector.CalculateAllLandmarks();

                // calculate action units
                var features = faceAnalyser.PredictStaticAUsAndComputeFeatures(grayFrame, points);

                // find the action units
                var actionUnits = (from au in features.Item2
                                   where au.Value > 0
                                   orderby au.Key
                                   select au.Key);

                // get top emotions
                var topEmotions = GetTopEmotions(actionUnits);

                // draw the emotion on the face
                using (Graphics g = Graphics.FromImage(image))
                {
                    string name = string.Join(Environment.NewLine, topEmotions);
                    Font   fnt  = new Font("Verdana", 15, GraphicsUnit.Pixel);
                    Brush  brs  = new SolidBrush(Color.Black);
                    var    bump = 36;
                    System.Drawing.SizeF stringSize = g.MeasureString(name, fnt);
                    g.FillRectangle(new SolidBrush(Color.Yellow), (int)face.X + bump, (int)face.Y, stringSize.Width, stringSize.Height);
                    g.DrawString(name, fnt, brs, (int)face.X + bump, (int)face.Y);
                }
            }
            return(image);
        }
예제 #3
0
        // The main function call for processing sequences
        private void ProcessSequence(SequenceReader reader)
        {
            Thread.CurrentThread.Priority = ThreadPriority.Highest;

            SetupFeatureExtractionMode();

            thread_running = true;

            // Reload the face landmark detector if needed
            ReloadLandmarkDetector();

            if (!landmark_detector.isLoaded())
            {
                DetectorNotFoundWarning();
                EndMode();
                thread_running = false;
                return;
            }

            // Set the face detector
            face_model_params.SetFaceDetector(DetectorHaar, DetectorHOG, DetectorCNN);
            face_model_params.optimiseForVideo();

            // Setup the visualization
            Visualizer visualizer_of = new Visualizer(ShowTrackedVideo || RecordTracked, ShowAppearance, ShowAppearance, false);

            // Initialize the face analyser
            face_analyser = new FaceAnalyserManaged(AppDomain.CurrentDomain.BaseDirectory, DynamicAUModels, image_output_size, MaskAligned);

            // Reset the tracker
            landmark_detector.Reset();

            // Loading an image file
            var frame      = new RawImage(reader.GetNextImage());
            var gray_frame = new RawImage(reader.GetCurrentFrameGray());

            // Setup recording
            RecorderOpenFaceParameters rec_params = new RecorderOpenFaceParameters(true, reader.IsWebcam(),
                                                                                   Record2DLandmarks, Record3DLandmarks, RecordModelParameters, RecordPose, RecordAUs,
                                                                                   RecordGaze, RecordHOG, RecordTracked, RecordAligned, false,
                                                                                   reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy(), reader.GetFPS());

            RecorderOpenFace recorder = new RecorderOpenFace(reader.GetName(), rec_params, record_root);

            // For FPS tracking
            DateTime?startTime     = CurrentTime;
            var      lastFrameTime = CurrentTime;

            // Empty image would indicate that the stream is over
            while (!gray_frame.IsEmpty)
            {
                if (!thread_running)
                {
                    break;
                }

                double progress = reader.GetProgress();

                bool detection_succeeding = landmark_detector.DetectLandmarksInVideo(frame, face_model_params, gray_frame);

                // The face analysis step (for AUs and eye gaze)
                face_analyser.AddNextFrame(frame, landmark_detector.CalculateAllLandmarks(), detection_succeeding, false);

                gaze_analyser.AddNextFrame(landmark_detector, detection_succeeding, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());

                // Only the final face will contain the details
                VisualizeFeatures(frame, visualizer_of, landmark_detector.CalculateAllLandmarks(), landmark_detector.GetVisibilities(), detection_succeeding, true, false, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy(), progress);

                // Record an observation
                RecordObservation(recorder, visualizer_of.GetVisImage(), 0, detection_succeeding, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy(), reader.GetTimestamp(), reader.GetFrameNumber());

                if (RecordTracked)
                {
                    recorder.WriteObservationTracked();
                }

                while (thread_running & thread_paused && skip_frames == 0)
                {
                    Thread.Sleep(10);
                }

                if (skip_frames > 0)
                {
                    skip_frames--;
                }

                frame      = new RawImage(reader.GetNextImage());
                gray_frame = new RawImage(reader.GetCurrentFrameGray());

                lastFrameTime = CurrentTime;
                processing_fps.AddFrame();
            }

            // Finalize the recording and flush to disk
            recorder.Close();

            // Post-process the AU recordings
            if (RecordAUs)
            {
                face_analyser.PostProcessOutputFile(recorder.GetCSVFile());
            }

            // Close the open video/webcam
            reader.Close();

            EndMode();
        }
예제 #4
0
        // The main function call for processing the webcam feed
        private void ProcessingLoop(SequenceReader reader)
        {
            thread_running = true;

            Thread.CurrentThread.IsBackground = true;

            DateTime?startTime = CurrentTime;

            var lastFrameTime = CurrentTime;

            landmark_detector.Reset();
            face_analyser.Reset();

            int frame_id = 0;

            double old_gaze_x = 0;
            double old_gaze_y = 0;

            double smile_cumm     = 0;
            double frown_cumm     = 0;
            double brow_up_cumm   = 0;
            double brow_down_cumm = 0;
            double widen_cumm     = 0;
            double wrinkle_cumm   = 0;

            while (thread_running)
            {
                // Loading an image file
                RawImage frame      = new RawImage(reader.GetNextImage());
                RawImage gray_frame = new RawImage(reader.GetCurrentFrameGray());

                lastFrameTime = CurrentTime;
                processing_fps.AddFrame();

                bool detection_succeeding = landmark_detector.DetectLandmarksInVideo(gray_frame, face_model_params);

                // The face analysis step (only done if recording AUs, HOGs or video)
                face_analyser.AddNextFrame(frame, landmark_detector.CalculateAllLandmarks(), detection_succeeding, true);
                gaze_analyser.AddNextFrame(landmark_detector, detection_succeeding, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());

                double confidence = landmark_detector.GetConfidence();

                if (confidence < 0)
                {
                    confidence = 0;
                }
                else if (confidence > 1)
                {
                    confidence = 1;
                }

                List <double> pose = new List <double>();

                landmark_detector.GetPose(pose, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());

                List <double> non_rigid_params = landmark_detector.GetNonRigidParams();
                double        scale            = landmark_detector.GetRigidParams()[0];

                double time_stamp = (DateTime.Now - (DateTime)startTime).TotalMilliseconds;


                List <Tuple <Point, Point> >   lines         = null;
                List <Tuple <double, double> > landmarks     = null;
                List <Tuple <double, double> > eye_landmarks = null;
                List <Tuple <Point, Point> >   gaze_lines    = null;
                Tuple <double, double>         gaze_angle    = gaze_analyser.GetGazeAngle();

                if (detection_succeeding)
                {
                    landmarks     = landmark_detector.CalculateVisibleLandmarks();
                    eye_landmarks = landmark_detector.CalculateVisibleEyeLandmarks();
                    lines         = landmark_detector.CalculateBox(reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());
                    gaze_lines    = gaze_analyser.CalculateGazeLines(reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());
                }

                // Visualisation
                Dispatcher.Invoke(DispatcherPriority.Render, new TimeSpan(0, 0, 0, 0, 200), (Action)(() =>
                {
                    var au_regs = face_analyser.GetCurrentAUsReg();
                    if (au_regs.Count > 0)
                    {
                        double smile = (au_regs["AU12"] + au_regs["AU06"] + au_regs["AU25"]) / 13.0;
                        double frown = (au_regs["AU15"] + au_regs["AU17"]) / 12.0;

                        double brow_up = (au_regs["AU01"] + au_regs["AU02"]) / 10.0;
                        double brow_down = au_regs["AU04"] / 5.0;

                        double eye_widen = au_regs["AU05"] / 3.0;
                        double nose_wrinkle = au_regs["AU09"] / 4.0;

                        Dictionary <int, double> smileDict = new Dictionary <int, double>();
                        smileDict[0] = 0.7 * smile_cumm + 0.3 * smile;
                        smileDict[1] = 0.7 * frown_cumm + 0.3 * frown;
                        smilePlot.AddDataPoint(new DataPointGraph()
                        {
                            Time = CurrentTime, values = smileDict, Confidence = confidence
                        });

                        Dictionary <int, double> browDict = new Dictionary <int, double>();
                        browDict[0] = 0.7 * brow_up_cumm + 0.3 * brow_up;
                        browDict[1] = 0.7 * brow_down_cumm + 0.3 * brow_down;
                        browPlot.AddDataPoint(new DataPointGraph()
                        {
                            Time = CurrentTime, values = browDict, Confidence = confidence
                        });

                        Dictionary <int, double> eyeDict = new Dictionary <int, double>();
                        eyeDict[0] = 0.7 * widen_cumm + 0.3 * eye_widen;
                        eyeDict[1] = 0.7 * wrinkle_cumm + 0.3 * nose_wrinkle;
                        eyePlot.AddDataPoint(new DataPointGraph()
                        {
                            Time = CurrentTime, values = eyeDict, Confidence = confidence
                        });

                        smile_cumm = smileDict[0];
                        frown_cumm = smileDict[1];
                        brow_up_cumm = browDict[0];
                        brow_down_cumm = browDict[1];
                        widen_cumm = eyeDict[0];
                        wrinkle_cumm = eyeDict[1];
                    }
                    else
                    {
                        // If no AUs present disable the AU visualization
                        MainGrid.ColumnDefinitions[2].Width = new GridLength(0);
                        eyePlot.Visibility = Visibility.Collapsed;
                        browPlot.Visibility = Visibility.Collapsed;
                        smilePlot.Visibility = Visibility.Collapsed;
                    }

                    Dictionary <int, double> poseDict = new Dictionary <int, double>();
                    poseDict[0] = -pose[3];
                    poseDict[1] = pose[4];
                    poseDict[2] = pose[5];
                    headPosePlot.AddDataPoint(new DataPointGraph()
                    {
                        Time = CurrentTime, values = poseDict, Confidence = confidence
                    });

                    Dictionary <int, double> gazeDict = new Dictionary <int, double>();
                    gazeDict[0] = gaze_angle.Item1 * (180.0 / Math.PI);
                    gazeDict[0] = 0.5 * old_gaze_x + 0.5 * gazeDict[0];
                    gazeDict[1] = -gaze_angle.Item2 * (180.0 / Math.PI);
                    gazeDict[1] = 0.5 * old_gaze_y + 0.5 * gazeDict[1];
                    gazePlot.AddDataPoint(new DataPointGraph()
                    {
                        Time = CurrentTime, values = gazeDict, Confidence = confidence
                    });

                    old_gaze_x = gazeDict[0];
                    old_gaze_y = gazeDict[1];

                    if (latest_img == null)
                    {
                        latest_img = frame.CreateWriteableBitmap();
                    }

                    frame.UpdateWriteableBitmap(latest_img);

                    video.Source = latest_img;
                    video.Confidence = confidence;
                    video.FPS = processing_fps.GetFPS();

                    if (!detection_succeeding)
                    {
                        video.OverlayLines.Clear();
                        video.OverlayPoints.Clear();
                        video.OverlayEyePoints.Clear();
                        video.GazeLines.Clear();
                    }
                    else
                    {
                        video.OverlayLines = lines;

                        List <Point> landmark_points = new List <Point>();
                        foreach (var p in landmarks)
                        {
                            landmark_points.Add(new Point(p.Item1, p.Item2));
                        }

                        List <Point> eye_landmark_points = new List <Point>();
                        foreach (var p in eye_landmarks)
                        {
                            eye_landmark_points.Add(new Point(p.Item1, p.Item2));
                        }


                        video.OverlayPoints = landmark_points;
                        video.OverlayEyePoints = eye_landmark_points;
                        video.GazeLines = gaze_lines;
                    }
                }));

                if (reset)
                {
                    if (resetPoint.HasValue)
                    {
                        landmark_detector.Reset(resetPoint.Value.X, resetPoint.Value.Y);
                        resetPoint = null;
                    }
                    else
                    {
                        landmark_detector.Reset();
                    }

                    face_analyser.Reset();
                    reset = false;

                    Dispatcher.Invoke(DispatcherPriority.Render, new TimeSpan(0, 0, 0, 0, 200), (Action)(() =>
                    {
                        headPosePlot.ClearDataPoints();
                        headPosePlot.ClearDataPoints();
                        gazePlot.ClearDataPoints();
                        smilePlot.ClearDataPoints();
                        browPlot.ClearDataPoints();
                        eyePlot.ClearDataPoints();
                    }));
                }

                frame_id++;
            }
            reader.Close();
            latest_img = null;
        }
예제 #5
0
        // Capturing and processing the video frame by frame
        private void VideoLoop(UtilitiesOF.SequenceReader reader)
        {
            Thread.CurrentThread.IsBackground = true;

            String root = AppDomain.CurrentDomain.BaseDirectory;
            FaceModelParameters model_params = new FaceModelParameters(root, true, false, false);

            // Initialize the face detector
            FaceDetector face_detector = new FaceDetector(model_params.GetHaarLocation(), model_params.GetMTCNNLocation());

            // If MTCNN model not available, use HOG
            if (!face_detector.IsMTCNNLoaded())
            {
                model_params.SetFaceDetector(false, true, false);
            }

            CLNF face_model = new CLNF(model_params);
            GazeAnalyserManaged gaze_analyser = new GazeAnalyserManaged();

            DateTime?startTime = CurrentTime;

            var lastFrameTime = CurrentTime;

            while (running)
            {
                //////////////////////////////////////////////
                // CAPTURE FRAME AND DETECT LANDMARKS FOLLOWED BY THE REQUIRED IMAGE PROCESSING
                //////////////////////////////////////////////

                RawImage frame = reader.GetNextImage();

                lastFrameTime = CurrentTime;
                processing_fps.AddFrame();

                var grayFrame = reader.GetCurrentFrameGray();

                if (mirror_image)
                {
                    frame.Mirror();
                    grayFrame.Mirror();
                }

                bool detectionSucceeding = ProcessFrame(face_model, gaze_analyser, model_params, frame, grayFrame, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());

                lock (recording_lock)
                {
                    if (recording)
                    {
                        // Add objects to recording queues
                        List <float> pose = new List <float>();
                        face_model.GetPose(pose, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());
                        RawImage image = new RawImage(frame);
                        recording_objects.Enqueue(new Tuple <RawImage, bool, List <float> >(image, detectionSucceeding, pose));
                    }
                }

                List <Tuple <System.Windows.Point, System.Windows.Point> > lines = null;
                List <Tuple <float, float> > eye_landmarks = null;
                List <System.Windows.Point>  landmarks     = new List <System.Windows.Point>();
                List <Tuple <System.Windows.Point, System.Windows.Point> > gaze_lines = null;
                Tuple <float, float> gaze_angle = new Tuple <float, float>(0, 0);
                var    visibilities             = face_model.GetVisibilities();
                double scale = face_model.GetRigidParams()[0];

                if (detectionSucceeding)
                {
                    List <Tuple <float, float> > landmarks_doubles = face_model.CalculateAllLandmarks();

                    foreach (var p in landmarks_doubles)
                    {
                        landmarks.Add(new System.Windows.Point(p.Item1, p.Item2));
                    }

                    eye_landmarks = face_model.CalculateVisibleEyeLandmarks();

                    gaze_lines = gaze_analyser.CalculateGazeLines(reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());
                    gaze_angle = gaze_analyser.GetGazeAngle();

                    lines = face_model.CalculateBox(reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());
                }

                if (reset)
                {
                    face_model.Reset();
                    reset = false;
                }

                // Visualisation updating
                try
                {
                    Dispatcher.Invoke(DispatcherPriority.Render, new TimeSpan(0, 0, 0, 0, 200), (Action)(() =>
                    {
                        if (latest_img == null)
                        {
                            latest_img = frame.CreateWriteableBitmap();
                        }

                        List <float> pose = new List <float>();
                        face_model.GetPose(pose, reader.GetFx(), reader.GetFy(), reader.GetCx(), reader.GetCy());

                        int yaw = (int)(pose[4] * 180 / Math.PI + 0.5);
                        int yaw_abs = Math.Abs(yaw);

                        int roll = (int)(pose[5] * 180 / Math.PI + 0.5);
                        int roll_abs = Math.Abs(roll);

                        int pitch = (int)(pose[3] * 180 / Math.PI + 0.5);
                        int pitch_abs = Math.Abs(pitch);

                        YawLabel.Content = yaw_abs + "°";
                        RollLabel.Content = roll_abs + "°";
                        PitchLabel.Content = pitch_abs + "°";

                        if (yaw > 0)
                        {
                            YawLabelDir.Content = "Right";
                        }
                        else if (yaw < 0)
                        {
                            YawLabelDir.Content = "Left";
                        }
                        else
                        {
                            YawLabelDir.Content = "Straight";
                        }

                        if (pitch > 0)
                        {
                            PitchLabelDir.Content = "Down";
                        }
                        else if (pitch < 0)
                        {
                            PitchLabelDir.Content = "Up";
                        }
                        else
                        {
                            PitchLabelDir.Content = "Straight";
                        }

                        if (roll > 0)
                        {
                            RollLabelDir.Content = "Left";
                        }
                        else if (roll < 0)
                        {
                            RollLabelDir.Content = "Right";
                        }
                        else
                        {
                            RollLabelDir.Content = "Straight";
                        }

                        XPoseLabel.Content = (int)pose[0] + " mm";
                        YPoseLabel.Content = (int)pose[1] + " mm";
                        ZPoseLabel.Content = (int)pose[2] + " mm";

                        String x_angle = String.Format("{0:F0}°", gaze_angle.Item1 * (180.0 / Math.PI));
                        String y_angle = String.Format("{0:F0}°", gaze_angle.Item2 * (180.0 / Math.PI));
                        YawLabelGaze.Content = x_angle;
                        PitchLabelGaze.Content = y_angle;

                        if (gaze_angle.Item1 > 0)
                        {
                            YawLabelGazeDir.Content = "Right";
                        }
                        else if (gaze_angle.Item1 < 0)
                        {
                            YawLabelGazeDir.Content = "Left";
                        }
                        else
                        {
                            YawLabelGazeDir.Content = "Straight";
                        }

                        if (gaze_angle.Item2 > 0)
                        {
                            PitchLabelGazeDir.Content = "Down";
                        }
                        else if (gaze_angle.Item2 < 0)
                        {
                            PitchLabelGazeDir.Content = "Up";
                        }
                        else
                        {
                            PitchLabelGazeDir.Content = "Straight";
                        }

                        double confidence = face_model.GetConfidence();

                        if (confidence < 0)
                        {
                            confidence = 0;
                        }
                        else if (confidence > 1)
                        {
                            confidence = 1;
                        }

                        frame.UpdateWriteableBitmap(latest_img);
                        webcam_img.Clear();

                        webcam_img.Source = latest_img;
                        webcam_img.Confidence.Add(confidence);
                        webcam_img.FPS = processing_fps.GetFPS();
                        if (detectionSucceeding)
                        {
                            webcam_img.OverlayLines.Add(lines);
                            webcam_img.OverlayPoints.Add(landmarks);
                            webcam_img.OverlayPointsVisibility.Add(visibilities);
                            webcam_img.FaceScale.Add(scale);

                            List <System.Windows.Point> eye_landmark_points = new List <System.Windows.Point>();
                            foreach (var p in eye_landmarks)
                            {
                                eye_landmark_points.Add(new System.Windows.Point(p.Item1, p.Item2));
                            }


                            webcam_img.OverlayEyePoints.Add(eye_landmark_points);
                            webcam_img.GazeLines.Add(gaze_lines);

                            // Publish the information for other applications
                            String str_head_pose = String.Format("{0}:{1:F2}, {2:F2}, {3:F2}, {4:F2}, {5:F2}, {6:F2}", "HeadPose", pose[0], pose[1], pose[2],
                                                                 pose[3] * 180 / Math.PI, pose[4] * 180 / Math.PI, pose[5] * 180 / Math.PI);

                            zero_mq_socket.Send(new ZFrame(str_head_pose, Encoding.UTF8));

                            String str_gaze = String.Format("{0}:{1:F2}, {2:F2}", "GazeAngle", gaze_angle.Item1 * (180.0 / Math.PI), gaze_angle.Item2 * (180.0 / Math.PI));

                            zero_mq_socket.Send(new ZFrame(str_gaze, Encoding.UTF8));
                        }
                    }));

                    while (running & pause)
                    {
                        Thread.Sleep(10);
                    }
                }
                catch (TaskCanceledException)
                {
                    // Quitting
                    break;
                }
            }
            reader.Close();
            System.Console.Out.WriteLine("Thread finished");
        }