public static void Run(VGGModel modelType) { OpenFileDialog ofd = new OpenFileDialog { Filter = "画像ファイル(*.jpg;*.png;*.gif;*.bmp)|*.jpg;*.png;*.gif;*.bmp|すべてのファイル(*.*)|*.*" }; if (ofd.ShowDialog() == DialogResult.OK) { int vggId = (int)modelType; Console.WriteLine("Model Loading."); string modelFilePath = InternetFileDownloader.Donwload(Urls[vggId], FileNames[vggId], Hashes[vggId]); List <Function> vggNet = CaffemodelDataLoader.ModelLoad(modelFilePath); string[] classList = File.ReadAllLines(CLASS_LIST_PATH); //GPUを初期化 for (int i = 0; i < vggNet.Count - 1; i++) { if (vggNet[i] is CPU.Convolution2D || vggNet[i] is CPU.Linear || vggNet[i] is CPU.MaxPooling2D) { vggNet[i] = (Function)CLConverter.Convert(vggNet[i]); } } FunctionStack nn = new FunctionStack(vggNet.ToArray()); //層を圧縮 nn.Compress(); Console.WriteLine("Model Loading done."); do { //ネットワークへ入力する前に解像度を 224px x 224px x 3ch にしておく Bitmap baseImage = new Bitmap(ofd.FileName); Bitmap resultImage = new Bitmap(224, 224, PixelFormat.Format24bppRgb); Graphics g = Graphics.FromImage(resultImage); g.DrawImage(baseImage, 0, 0, 224, 224); g.Dispose(); Real[] bias = { -123.68, -116.779, -103.939 }; //補正値のチャンネル順は入力画像に従う(標準的なBitmapならRGB) NdArray imageArray = BitmapConverter.Image2NdArray(resultImage, false, true, bias); Console.WriteLine("Start predict."); Stopwatch sw = Stopwatch.StartNew(); NdArray result = nn.Predict(imageArray)[0]; sw.Stop(); Console.WriteLine("Result Time : " + (sw.ElapsedTicks / (Stopwatch.Frequency / (1000L * 1000L))).ToString("n0") + "μs"); int maxIndex = Array.IndexOf(result.Data, result.Data.Max()); Console.WriteLine("[" + result.Data[maxIndex] + "] : " + classList[maxIndex]); } while (ofd.ShowDialog() == DialogResult.OK); } }
public static void Run() { OpenFileDialog ofd = new OpenFileDialog { Filter = "画像ファイル(*.jpg;*.png;*.gif;*.bmp)|*.jpg;*.png;*.gif;*.bmp|すべてのファイル(*.*)|*.*" }; if (ofd.ShowDialog() == DialogResult.OK) { Console.WriteLine("Model Loading."); string modelFilePath = InternetFileDownloader.Donwload(DOWNLOAD_URL, MODEL_FILE, MODEL_FILE_HASH); List <Function <Real> > alexNet = CaffemodelDataLoader.ModelLoad <Real>(modelFilePath); string[] classList = File.ReadAllLines(CLASS_LIST_PATH); //GPUを初期化 for (int i = 0; i < alexNet.Count - 1; i++) { if (alexNet[i] is CPU.Convolution2D <Real> || alexNet[i] is CPU.Linear <Real> || alexNet[i] is CPU.MaxPooling2D <Real> ) { alexNet[i] = (Function <Real>)CLConverter.Convert(alexNet[i]); } } FunctionStack <Real> nn = new FunctionStack <Real>(alexNet.ToArray()); //層を圧縮 nn.Compress(); Console.WriteLine("Model Loading done."); do { //ネットワークへ入力する前に解像度を 224px x 224px x 3ch にしておく Bitmap baseImage = new Bitmap(ofd.FileName); Bitmap resultImage = new Bitmap(227, 227, PixelFormat.Format24bppRgb); Graphics g = Graphics.FromImage(resultImage); g.DrawImage(baseImage, 0, 0, 227, 227); g.Dispose(); Real[] bias = new Real[] { -123.68f, -116.779f, -103.939f }; //補正値のチャンネル順は入力画像に従う NdArray <Real> imageArray = BitmapConverter.Image2NdArray(resultImage, false, true, bias); Console.WriteLine("Start predict."); Stopwatch sw = Stopwatch.StartNew(); NdArray <Real> result = nn.Predict(imageArray)[0]; sw.Stop(); Console.WriteLine("Result Time : " + (sw.ElapsedTicks / (Stopwatch.Frequency / (1000L * 1000L))).ToString("n0") + "μs"); int maxIndex = Array.IndexOf(result.Data, result.Data.Max()); Console.WriteLine("[" + result.Data[maxIndex] + "] : " + classList[maxIndex]); } while (ofd.ShowDialog() == DialogResult.OK); } }
static void SwitchGPU(CPU.FunctionStack <Real> functionStack) { for (int i = 0; i < functionStack.Functions.Length; i++) { if (functionStack.Functions[i] is CPU.Convolution2D <Real> || functionStack.Functions[i] is CPU.Linear <Real> || functionStack.Functions[i] is CPU.MaxPooling2D <Real> ) { functionStack.Functions[i] = (Function <Real>)CLConverter.Convert(functionStack.Functions[i]); } if (functionStack.Functions[i] is SplitFunction <Real> splitFunction) { for (int j = 0; j < splitFunction.SplitedFunctions.Length; j++) { SwitchGPU(splitFunction.SplitedFunctions[j]); } } } //ブロック単位で層の圧縮を実行 functionStack.Compress(); }
public static void Run(VGGModel modelType) { OpenFileDialog ofd = new OpenFileDialog { Filter = "画像ファイル(*.jpg;*.png;*.gif;*.bmp)|*.jpg;*.png;*.gif;*.bmp|すべてのファイル(*.*)|*.*" }; if (ofd.ShowDialog() == DialogResult.OK) { int vggId = (int)modelType; Console.WriteLine("Model Loading."); string modelFilePath = InternetFileDownloader.Donwload(Urls[vggId], FileNames[vggId], Hashes[vggId]); List <Function <Real> > vggNet = OnnxmodelDataLoader.LoadNetWork <Real>(modelFilePath); string[] classList = File.ReadAllLines(CLASS_LIST_PATH); //GPUを初期化 for (int i = 0; i < vggNet.Count - 1; i++) { if (vggNet[i] is CPU.Convolution2D <Real> || vggNet[i] is CPU.Linear <Real> || vggNet[i] is CPU.MaxPooling2D <Real> ) { vggNet[i] = (Function <Real>)CLConverter.Convert(vggNet[i]); } } FunctionStack <Real> nn = new FunctionStack <Real>(vggNet.ToArray()); //層を圧縮 nn.Compress(); Console.WriteLine("Model Loading done."); do { //ネットワークへ入力する前に解像度を 224px x 224px x 3ch にしておく Bitmap baseImage = new Bitmap(ofd.FileName); Bitmap resultImage = new Bitmap(224, 224, PixelFormat.Format24bppRgb); Graphics g = Graphics.FromImage(resultImage); g.DrawImage(baseImage, 0, 0, 224, 224); g.Dispose(); Real[] mean = new Real[] { 0.485f, 0.456f, 0.406f }; Real[] std = new Real[] { 0.229f, 0.224f, 0.225f }; NdArray <Real> imageArray = BitmapConverter.Image2NdArray <Real>(resultImage); int dataSize = imageArray.Shape[1] * imageArray.Shape[2]; for (int ch = 0; ch < imageArray.Shape[0]; ch++) { for (int i = 0; i < dataSize; i++) { imageArray.Data[ch * dataSize + i] = (imageArray.Data[ch * dataSize + i] - mean[ch]) / std[ch]; } } Console.WriteLine("Start predict."); Stopwatch sw = Stopwatch.StartNew(); NdArray <Real> result = nn.Predict(imageArray)[0]; sw.Stop(); Console.WriteLine("Result Time : " + (sw.ElapsedTicks / (Stopwatch.Frequency / (1000L * 1000L))).ToString("n0") + "μs"); int maxIndex = Array.IndexOf(result.Data, result.Data.Max()); Console.WriteLine("[" + result.Data[maxIndex] + "] : " + classList[maxIndex]); } while (ofd.ShowDialog() == DialogResult.OK); } }