예제 #1
0
        public void InitTrajectoryTask()
        {
            TaskVectorN taskList = dataModel.getTaskList();

            // get the trajectory task object
            trajectoryTask = (CTrajectoryTask)taskList.getByName("Time-Course");

            // if there isn't one
            if (trajectoryTask == null)
            {
                // create a new one
                trajectoryTask = new CTrajectoryTask();

                // remove any existing trajectory task just to be sure since in
                // theory only the cast might have failed above
                taskList.removeByName("Time-Course");

                // add the new time course task to the task list
                taskList.add(trajectoryTask, true);
            }

            // run a deterministic time course
            trajectoryTask.setMethodType(CCopasiMethod.deterministic);

            // get the problem for the task to set some parameters
            CTrajectoryProblem problem = (CTrajectoryProblem)trajectoryTask.getProblem();

            // pass a pointer of the model to the problem
            problem.setModel(dataModel.getModel());

            // we want the model to be updated for each simulation
            trajectoryTask.setUpdateModel(true);

            // simulate only one step
            problem.setStepNumber(1);

            model.setInitialTime(0.0);

            // set some parameters for the LSODA method through the method
            CTrajectoryMethod method = (CTrajectoryMethod)trajectoryTask.getMethod();

            CCopasiParameter parameter = method.getParameter("Absolute Tolerance");

            parameter.setDblValue(1.0e-12);
        }
예제 #2
0
파일: example3.cs 프로젝트: nanls/COPASI
    static void Main(string[] args)
    {
        Debug.Assert(CRootContainer.getRoot() != null);
        // create a new datamodel
        CDataModel dataModel = CRootContainer.addDatamodel();

        Debug.Assert(CRootContainer.getDatamodelList().size() == 1);
        // the only argument to the main routine should be the name of an SBML file
        if (args.Length == 1)
        {
            string filename = args[0];
            try
            {
                // load the model
                dataModel.importSBML(filename);
            }
            catch
            {
                System.Console.Error.WriteLine("Error while importing the model from file named \"" + filename + "\".");
                System.Environment.Exit(1);
            }
            CModel model = dataModel.getModel();
            Debug.Assert(model != null);
            // create a report with the correct filename and all the species against
            // time.
            CReportDefinitionVector reports = dataModel.getReportDefinitionList();
            // create a new report definition object
            CReportDefinition report = reports.createReportDefinition("Report", "Output for timecourse");
            // set the task type for the report definition to timecourse
            report.setTaskType(CTaskEnum.Task_timeCourse);
            // we don't want a table
            report.setIsTable(false);
            // the entries in the output should be seperated by a ", "
            report.setSeparator(new CCopasiReportSeparator(", "));

            // we need a handle to the header and the body
            // the header will display the ids of the metabolites and "time" for
            // the first column
            // the body will contain the actual timecourse data
            ReportItemVector header = report.getHeaderAddr();
            ReportItemVector body   = report.getBodyAddr();

            body.Add(new CRegisteredCommonName(model.getObject(new CCommonName("Reference=Time")).getCN().getString()));
            body.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));
            header.Add(new CRegisteredCommonName(new CDataString("time").getCN().getString()));
            header.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));

            uint i, iMax = (uint)model.getMetabolites().size();
            for (i = 0; i < iMax; ++i)
            {
                CMetab metab = model.getMetabolite(i);
                Debug.Assert(metab != null);
                // we don't want output for FIXED metabolites right now
                if (metab.getStatus() != CModelEntity.Status_FIXED)
                {
                    // we want the concentration oin the output
                    // alternatively, we could use "Reference=Amount" to get the
                    // particle number
                    body.Add(new CRegisteredCommonName(metab.getObject(new CCommonName("Reference=Concentration")).getCN().getString()));
                    // add the corresponding id to the header
                    header.Add(new CRegisteredCommonName(new CDataString(metab.getSBMLId()).getCN().getString()));
                    // after each entry, we need a seperator
                    if (i != iMax - 1)
                    {
                        body.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));
                        header.Add(new CRegisteredCommonName(report.getSeparator().getCN().getString()));
                    }
                }
            }


            // get the trajectory task object
            CTrajectoryTask trajectoryTask = (CTrajectoryTask)dataModel.getTask("Time-Course");

            // run a deterministic time course
            trajectoryTask.setMethodType(CTaskEnum.Method_deterministic);

            // pass a pointer of the model to the problem
            trajectoryTask.getProblem().setModel(dataModel.getModel());

            // actiavate the task so that it will be run when the model is saved
            // and passed to CopasiSE
            trajectoryTask.setScheduled(true);

            // set the report for the task
            trajectoryTask.getReport().setReportDefinition(report);
            // set the output filename
            trajectoryTask.getReport().setTarget("example3.txt");
            // don't append output if the file exists, but overwrite the file
            trajectoryTask.getReport().setAppend(false);

            // get the problem for the task to set some parameters
            CTrajectoryProblem problem = (CTrajectoryProblem)trajectoryTask.getProblem();

            // simulate 100 steps
            problem.setStepNumber(100);
            // start at time 0
            dataModel.getModel().setInitialTime(0.0);
            // simulate a duration of 10 time units
            problem.setDuration(10);
            // tell the problem to actually generate time series data
            problem.setTimeSeriesRequested(true);

            // set some parameters for the LSODA method through the method
            CTrajectoryMethod method = (CTrajectoryMethod)trajectoryTask.getMethod();

            CCopasiParameter parameter = method.getParameter("Absolute Tolerance");
            Debug.Assert(parameter != null);
            Debug.Assert(parameter.getType() == CCopasiParameter.Type_DOUBLE);
            parameter.setDblValue(1.0e-12);

            bool result = true;
            try
            {
                // now we run the actual trajectory
                result = trajectoryTask.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
            }
            catch
            {
                System.Console.Error.WriteLine("Error. Running the time course simulation failed.");
                String lastErrors = trajectoryTask.getProcessError();
                // check if there are additional error messages
                if (!string.IsNullOrEmpty(lastErrors))
                {
                    // print the messages in chronological order
                    System.Console.Error.WriteLine(lastErrors);
                }

                System.Environment.Exit(1);
            }
            if (result == false)
            {
                System.Console.Error.WriteLine("An error occured while running the time course simulation.");
                String lastErrors = trajectoryTask.getProcessError();
                // check if there are additional error messages
                if (!string.IsNullOrEmpty(lastErrors))
                {
                    // print the messages in chronological order
                    System.Console.Error.WriteLine(lastErrors);
                }

                System.Environment.Exit(1);
            }

            // look at the timeseries
            CTimeSeries timeSeries = trajectoryTask.getTimeSeries();
            // we simulated 100 steps, including the initial state, this should be
            // 101 step in the timeseries
            Debug.Assert(timeSeries.getRecordedSteps() == 101);
            System.Console.WriteLine("The time series consists of " + System.Convert.ToString(timeSeries.getRecordedSteps()) + ".");
            System.Console.WriteLine("Each step contains " + System.Convert.ToString(timeSeries.getNumVariables()) + " variables.");
            System.Console.WriteLine("The final state is: ");
            iMax = (uint)timeSeries.getNumVariables();
            uint lastIndex = (uint)timeSeries.getRecordedSteps() - 1;
            for (i = 0; i < iMax; ++i)
            {
                // here we get the particle number (at least for the species)
                // the unit of the other variables may not be particle numbers
                // the concentration data can be acquired with getConcentrationData
                System.Console.WriteLine(timeSeries.getTitle(i) + ": " + System.Convert.ToString(timeSeries.getData(lastIndex, i)));
            }
        }
        else
        {
            System.Console.Error.WriteLine("Usage: example3 SBMLFILE");
            System.Environment.Exit(1);
        }
    }
예제 #3
0
파일: example5.cs 프로젝트: tlming16/COPASI
    static void Main()
    {
        Debug.Assert(CCopasiRootContainer.getRoot() != null);
        // create a new datamodel
        CCopasiDataModel dataModel = CCopasiRootContainer.addDatamodel();

        Debug.Assert(CCopasiRootContainer.getDatamodelList().size() == 1);
        // get the model from the datamodel
        CModel model = dataModel.getModel();

        Debug.Assert(model != null);
        model.setVolumeUnit(CUnit.fl);
        model.setTimeUnit(CUnit.s);
        model.setQuantityUnit(CUnit.fMol);
        CModelValue fixedModelValue = model.createModelValue("F");

        Debug.Assert(fixedModelValue != null);
        fixedModelValue.setStatus(CModelEntity.FIXED);
        fixedModelValue.setInitialValue(3.0);
        CModelValue variableModelValue = model.createModelValue("V");

        Debug.Assert(variableModelValue != null);
        variableModelValue.setStatus(CModelEntity.ASSIGNMENT);
        // we create a very simple assignment that is easy on the optimization
        // a parabole with the minimum at x=6 should do just fine
        string s = fixedModelValue.getValueReference().getCN().getString();

        s = "(<" + s + "> - 6.0)^2";
        variableModelValue.setExpression(s);
        // now we compile the model and tell COPASI which values have changed so
        // that COPASI can update the values that depend on those
        model.compileIfNecessary();
        ObjectStdVector changedObjects = new ObjectStdVector();

        changedObjects.Add(fixedModelValue.getInitialValueReference());
        changedObjects.Add(variableModelValue.getInitialValueReference());
        model.updateInitialValues(changedObjects);

        // now we set up the optimization

        // we want to do an optimization for the time course
        // so we have to set up the time course task first
        CTrajectoryTask timeCourseTask = (CTrajectoryTask)dataModel.getTask("Time-Course");

        Debug.Assert(timeCourseTask != null);
        // since for this example it really doesn't matter how long we run the time course
        // we run for 1 second and calculate 10 steps
        // run a deterministic time course
        timeCourseTask.setMethodType(CTaskEnum.deterministic);

        // pass a pointer of the model to the problem
        timeCourseTask.getProblem().setModel(dataModel.getModel());

        // get the problem for the task to set some parameters
        CTrajectoryProblem problem = (CTrajectoryProblem)timeCourseTask.getProblem();

        Debug.Assert(problem != null);

        // simulate 10 steps
        problem.setStepNumber(10);
        // start at time 0
        dataModel.getModel().setInitialTime(0.0);
        // simulate a duration of 1 time units
        problem.setDuration(1);
        // tell the problem to actually generate time series data
        problem.setTimeSeriesRequested(true);

        // get the optimization task
        COptTask optTask = (COptTask)dataModel.getTask("Optimization");

        Debug.Assert(optTask != null);
        // we want to use Levenberg-Marquardt as the optimization method
        optTask.setMethodType(CTaskEnum.LevenbergMarquardt);

        // next we need to set subtask type on the problem
        COptProblem optProblem = (COptProblem)optTask.getProblem();

        Debug.Assert(optProblem != null);
        optProblem.setSubtaskType(CTaskEnum.timeCourse);

        // we create the objective function
        // we want to minimize the value of the variable model value at the end of
        // the simulation
        // the objective function is normally minimized
        string objectiveFunction = variableModelValue.getObject(new CCopasiObjectName("Reference=Value")).getCN().getString();

        // we need to put the angled brackets around the common name of the object
        objectiveFunction = "<" + objectiveFunction + ">";
        // now we set the objective function in the problem
        optProblem.setObjectiveFunction(objectiveFunction);

        // now we create the optimization items
        // i.e. the model elements that have to be changed during the optimization
        // in order to get to the optimal solution
        COptItem optItem = optProblem.addOptItem(new CCopasiObjectName(fixedModelValue.getObject(new CCopasiObjectName("Reference=InitialValue")).getCN()));

        // we want to change the fixed model value from -100 to +100 with a start
        // value of 50
        optItem.setStartValue(50.0);
        optItem.setLowerBound(new CCopasiObjectName("-100"));
        optItem.setUpperBound(new CCopasiObjectName("100"));

        // now we set some parameters on the method
        // these parameters are specific to the method type we set above
        // (in this case Levenberg-Marquardt)
        COptMethod optMethod = (COptMethod)optTask.getMethod();

        Debug.Assert(optMethod != null);

        // now we set some method parameters for the optimization method
        // iteration limit
        CCopasiParameter parameter = optMethod.getParameter("Iteration Limit");

        Debug.Assert(parameter != null);
        parameter.setIntValue(2000);
        // tolerance
        parameter = optMethod.getParameter("Tolerance");
        Debug.Assert(parameter != null);
        parameter.setDblValue(1.0e-5);

        // create a report with the correct filename and all the species against
        // time.
        CReportDefinitionVector reports = dataModel.getReportDefinitionList();
        // create a new report definition object
        CReportDefinition report = reports.createReportDefinition("Report", "Output for optimization");

        // set the task type for the report definition to timecourse
        report.setTaskType(CTaskEnum.optimization);
        // we don't want a table
        report.setIsTable(false);
        // the entries in the output should be seperated by a ", "
        report.setSeparator(new CCopasiReportSeparator(", "));

        // we need a handle to the header and the body
        // the header will display the ids of the metabolites and "time" for
        // the first column
        // the body will contain the actual timecourse data
        ReportItemVector header = report.getHeaderAddr();
        ReportItemVector body   = report.getBodyAddr();

        // in the report header we write two strings and a separator
        header.Add(new CRegisteredObjectName(new CCopasiStaticString("best value of objective function").getCN().getString()));
        header.Add(new CRegisteredObjectName(report.getSeparator().getCN().getString()));
        header.Add(new CRegisteredObjectName(new CCopasiStaticString("initial value of F").getCN().getString()));
        // in the report body we write the best value of the objective function and
        // the initial value of the fixed parameter separated by a komma
        body.Add(new CRegisteredObjectName(optProblem.getObject(new CCopasiObjectName("Reference=Best Value")).getCN().getString()));
        body.Add(new CRegisteredObjectName(report.getSeparator().getCN().getString()));
        body.Add(new CRegisteredObjectName(fixedModelValue.getObject(new CCopasiObjectName("Reference=InitialValue")).getCN().getString()));


        // set the report for the task
        optTask.getReport().setReportDefinition(report);
        // set the output filename
        optTask.getReport().setTarget("example5.txt");
        // don't append output if the file exists, but overwrite the file
        optTask.getReport().setAppend(false);


        bool result = false;

        try
        {
            result = optTask.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
        }
        catch (System.ApplicationException e)
        {
            System.Console.Error.WriteLine("ERROR: " + e.Message);
            String lastErrors = optTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }
        if (!result)
        {
            System.Console.Error.WriteLine("Running the optimization failed.");
            String lastErrors = optTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }
        // now we check if the optimization actually got the correct result
        // the best value it should have is 0 and the best parameter value for
        // that result should be 6 for the initial value of the fixed parameter
        double bestValue = optProblem.getSolutionValue();

        Debug.Assert(System.Math.Abs(bestValue) < 1e-3);
        // we should only have one solution variable since we only have one
        // optimization item
        Debug.Assert(optProblem.getSolutionVariables().size() == 1);
        double solution = optProblem.getSolutionVariables().get(0);

        Debug.Assert(System.Math.Abs((solution - 6.0) / 6.0) < 1e-3);
    }
예제 #4
0
    static void Main()
    {
        Debug.Assert(CRootContainer.getRoot() != null);
        // create a new datamodel
        CDataModel dataModel = CRootContainer.addDatamodel();

        Debug.Assert(CRootContainer.getDatamodelList().size() == 1);
        // get the model from the datamodel
        CModel model = dataModel.getModel();

        Debug.Assert(model != null);
        // set the units for the model
        // we want seconds as the time unit
        // microliter as the volume units
        // and nanomole as the substance units
        model.setTimeUnit(CUnit.s);
        model.setVolumeUnit(CUnit.microl);
        model.setQuantityUnit(CUnit.nMol);

        // we have to keep a set of all the initial values that are changed during
        // the model building process
        // They are needed after the model has been built to make sure all initial
        // values are set to the correct initial value
        ObjectStdVector changedObjects = new ObjectStdVector();

        // create a compartment with the name cell and an initial volume of 5.0
        // microliter
        CCompartment compartment = model.createCompartment("cell", 5.0);
        CDataObject  obj         = compartment.getInitialValueReference();

        Debug.Assert(obj != null);
        changedObjects.Add(obj);
        Debug.Assert(compartment != null);
        Debug.Assert(model.getCompartments().size() == 1);
        // create a new metabolite with the name glucose and an inital
        // concentration of 10 nanomol
        // the metabolite belongs to the compartment we created and is is to be
        // fixed
        CMetab glucose = model.createMetabolite("glucose", compartment.getObjectName(), 10.0, CModelEntity.Status_FIXED);

        obj = glucose.getInitialValueReference();
        Debug.Assert(obj != null);
        changedObjects.Add(obj);
        Debug.Assert(glucose != null);
        Debug.Assert(model.getMetabolites().size() == 1);
        // create a second metabolite called glucose-6-phosphate with an initial
        // concentration of 0. This metabolite is to be changed by reactions
        CMetab g6p = model.createMetabolite("glucose-6-phosphate", compartment.getObjectName(), 0.0, CModelEntity.Status_REACTIONS);

        Debug.Assert(g6p != null);
        obj = g6p.getInitialValueReference();
        Debug.Assert(obj != null);
        changedObjects.Add(obj);
        Debug.Assert(model.getMetabolites().size() == 2);
        // another metabolite for ATP, also fixed
        CMetab atp = model.createMetabolite("ATP", compartment.getObjectName(), 10.0, CModelEntity.Status_FIXED);

        Debug.Assert(atp != null);
        obj = atp.getInitialValueReference();
        Debug.Assert(obj != null);
        changedObjects.Add(obj);
        Debug.Assert(model.getMetabolites().size() == 3);
        // and one for ADP
        CMetab adp = model.createMetabolite("ADP", compartment.getObjectName(), 0.0, CModelEntity.Status_REACTIONS);

        Debug.Assert(adp != null);
        obj = adp.getInitialValueReference();
        Debug.Assert(obj != null);
        changedObjects.Add(obj);
        Debug.Assert(model.getMetabolites().size() == 4);
        // now we create a reaction
        CReaction reaction = model.createReaction("hexokinase");

        Debug.Assert(reaction != null);
        Debug.Assert(model.getReactions().size() == 1);
        // hexokinase converts glucose and ATP to glucose-6-phosphate and ADP
        // we can set these on the chemical equation of the reaction
        CChemEq chemEq = reaction.getChemEq();

        // glucose is a substrate with stoichiometry 1
        chemEq.addMetabolite(glucose.getKey(), 1.0, CChemEq.SUBSTRATE);
        // ATP is a substrate with stoichiometry 1
        chemEq.addMetabolite(atp.getKey(), 1.0, CChemEq.SUBSTRATE);
        // glucose-6-phosphate is a product with stoichiometry 1
        chemEq.addMetabolite(g6p.getKey(), 1.0, CChemEq.PRODUCT);
        // ADP is a product with stoichiometry 1
        chemEq.addMetabolite(adp.getKey(), 1.0, CChemEq.PRODUCT);
        Debug.Assert(chemEq.getSubstrates().size() == 2);
        Debug.Assert(chemEq.getProducts().size() == 2);
        // this reaction is to be irreversible
        reaction.setReversible(false);
        Debug.Assert(reaction.isReversible() == false);
        // now we ned to set a kinetic law on the reaction
        // maybe constant flux would be OK
        // we need to get the function from the function database
        CFunctionDB funDB = CRootContainer.getFunctionList();

        Debug.Assert(funDB != null);
        // it should be in the list of suitable functions
        // lets get all suitable functions for an irreversible reaction with  2 substrates
        // and 2 products
        CFunctionStdVector suitableFunctions = funDB.suitableFunctions(2, 2, COPASI.TriFalse);

        Debug.Assert((suitableFunctions.Count > 0));
        int i, iMax = (int)suitableFunctions.Count;

        for (i = 0; i < iMax; ++i)
        {
            // we just assume that the only suitable function with Constant in
            // it's name is the one we want
            if (suitableFunctions[i].getObjectName().IndexOf("Constant") != -1)
            {
                break;
            }
        }
        if (i != iMax)
        {
            // we set the function
            // the method should be smart enough to associate the reaction entities
            // with the correct function parameters
            reaction.setFunction(suitableFunctions[i]);
            Debug.Assert(reaction.getFunction() != null);
            // constant flux has only one function parameter
            Debug.Assert(reaction.getFunctionParameters().size() == 1);
            // so there should be only one entry in the parameter mapping as well
            Debug.Assert(reaction.getParameterCNs().Count == 1);
            CCopasiParameterGroup parameterGroup = reaction.getParameters();
            Debug.Assert(parameterGroup.size() == 1);
            CCopasiParameter parameter = parameterGroup.getParameter(0);
            // make sure the parameter is a local parameter
            Debug.Assert(reaction.isLocalParameter(parameter.getObjectName()));
            // now we set the value of the parameter to 0.5
            Debug.Assert(parameter.getType() == CCopasiParameter.Type_DOUBLE);
            parameter.setDblValue(0.5);
            obj = parameter.getValueReference();
            Debug.Assert(obj != null);
            changedObjects.Add(obj);
        }
        else
        {
            System.Console.Error.WriteLine("Error. Could not find a kinetic law that conatins the term \"Constant\".");
            System.Environment.Exit(1);
        }
        // now we also create a separate reaction for the backwards reaction and
        // set the kinetic law to irreversible mass action
        // now we create a reaction
        reaction = model.createReaction("hexokinase-backwards");
        Debug.Assert(reaction != null);
        Debug.Assert(model.getReactions().size() == 2);
        chemEq = reaction.getChemEq();
        // glucose is a product with stoichiometry 1
        chemEq.addMetabolite(glucose.getKey(), 1.0, CChemEq.PRODUCT);
        // ATP is a product with stoichiometry 1
        chemEq.addMetabolite(atp.getKey(), 1.0, CChemEq.PRODUCT);
        // glucose-6-phosphate is a substrate with stoichiometry 1
        chemEq.addMetabolite(g6p.getKey(), 1.0, CChemEq.SUBSTRATE);
        // ADP is a substrate with stoichiometry 1
        chemEq.addMetabolite(adp.getKey(), 1.0, CChemEq.SUBSTRATE);
        Debug.Assert(chemEq.getSubstrates().size() == 2);
        Debug.Assert(chemEq.getProducts().size() == 2);
        // this reaction is to be irreversible
        reaction.setReversible(false);
        Debug.Assert(reaction.isReversible() == false);
        // now we ned to set a kinetic law on the reaction
        CFunction massAction = (CFunction)funDB.findFunction("Mass action (irreversible)");

        Debug.Assert(massAction != null);
        // we set the function
        // the method should be smart enough to associate the reaction entities
        // with the correct function parameters
        reaction.setFunction(massAction);
        Debug.Assert(reaction.getFunction() != null);

        Debug.Assert(reaction.getFunctionParameters().size() == 2);
        // so there should be two entries in the parameter mapping as well
        Debug.Assert(reaction.getParameterCNs().Count == 2);
        // mass action is a special case since the parameter mappings for the
        // substrates (and products) are in a vector

        // Let us create a global parameter that is determined by an assignment
        // and that is used as the rate constant of the mass action kinetics
        // it gets the name rateConstant and an initial value of 1.56
        CModelValue modelValue = model.createModelValue("rateConstant", 1.56);

        Debug.Assert(modelValue != null);
        obj = modelValue.getInitialValueReference();
        Debug.Assert(obj != null);
        changedObjects.Add(obj);
        Debug.Assert(model.getModelValues().size() == 1);
        // set the status to assignment
        modelValue.setStatus(CModelEntity.Status_ASSIGNMENT);
        // the assignment does not have to make sense
        modelValue.setExpression("1.0 / 4.0 + 2.0");

        // now we have to adjust the parameter mapping in the reaction so
        // that the kinetic law uses the global parameter we just created instead
        // of the local one that is created by default
        // The first parameter is the one for the rate constant, so we point it to
        // the key of out model value
        reaction.setParameterObject(0, modelValue);
        // now we have to set the parameter mapping for the substrates
        reaction.addParameterObject("substrate", g6p);
        reaction.addParameterObject("substrate", adp);

        // finally compile the model
        // compile needs to be done before updating all initial values for
        // the model with the refresh sequence
        model.compileIfNecessary();

        // now that we are done building the model, we have to make sure all
        // initial values are updated according to their dependencies
        model.updateInitialValues(changedObjects);

        // save the model to a COPASI file
        // we save to a file named example1.cps
        // and we want to overwrite any existing file with the same name
        // Default tasks are automatically generated and will always appear in cps
        // file unless they are explicitley deleted before saving.
        dataModel.saveModel("example1.cps", true);

        // export the model to an SBML file
        // we save to a file named example1.xml, we want to overwrite any
        // existing file with the same name and we want SBML L2V3
        try
        {
            dataModel.exportSBML("example1.xml", true, 2, 3);
        }
        catch
        {
            System.Console.Error.WriteLine("Error. Exporting the model to SBML failed.");
        }
    }
예제 #5
0
        /// <summary>
        /// Updates a reaction.
        /// </summary>
        /// <param name="reaction">COPASI Reaction.</param>
        /// <param name="reagents">Reagents.</param>
        /// <param name="products">Products.</param>
        /// <param name="rate">Rate.</param>
        public void UpdateReaction(CReaction reaction, MoleculeSpecies[] reagents, MoleculeSpecies[] products, double rate)
        {
            // we can set these on the chemical equation of the reaction
            CChemEq chemEq = reaction.getChemEq();

            // remove all existing metabolites
            chemEq.getSubstrates().clear();
            chemEq.getProducts().clear();

            // add substrates
            CMetab[] substrates = GetMetabs(reagents);
            foreach (CMetab item in substrates)
            {
                // add substrate with stoichiometry 1
                chemEq.addMetabolite(item.getKey(), 1.0, CChemEq.SUBSTRATE);
            }

            // add products
            CMetab[] metabProducts = GetMetabs(products);
            foreach (CMetab item in metabProducts)
            {
                // add product with stoichiometry 1
                chemEq.addMetabolite(item.getKey(), 1.0, CChemEq.PRODUCT);
            }

            // this reaction is to be irreversible
            reaction.setReversible(false);


            // now we ned to set a kinetic law on the reaction
            // maybe constant flux would be OK
            // we need to get the function from the function database
            CFunctionDB funDB = CCopasiRootContainer.getFunctionList();

            // it should be in the list of suitable functions
            // lets get all suitable functions for an irreversible reaction with  x substrates
            // and y products
            CFunctionStdVector suitableFunctions = funDB.suitableFunctions((uint)substrates.Length, (uint)products.Length, COPASI.TriFalse);

            CFunction function = null;

            for (int i = 0; i < suitableFunctions.Count; i++)
            {
                // we just assume that the only suitable function with mass action in
                // it's name is the one we want
                if (suitableFunctions[i].getObjectName().ToLower().Contains("mass action"))
                {
                    function = suitableFunctions[i];
                    break;
                }
            }

            if (function != null)
            {
                reaction.setFunction(function);

                CCopasiParameterGroup parameterGroup = reaction.getParameters();
                CCopasiParameter      parameter      = parameterGroup.getParameter(0);
                // make sure the parameter is a local parameter
                System.Diagnostics.Debug.Assert(reaction.isLocalParameter(parameter.getObjectName()));
                // now we set the value of the parameter to 0.5
                System.Diagnostics.Debug.Assert(parameter.getType() == CCopasiParameter.DOUBLE);
                parameter.setDblValue(rate);
                CCopasiObject obj = parameter.getValueReference();
                changedObjects.Add(obj);

                //reaction.getParameterMappings().Clear();

                foreach (var substrate in substrates)
                {
                    reaction.addParameterMapping("substrate", substrate.getKey());
                }
            }
            else
            {
                throw new System.Exception("Error. Could not find a kinetic law that conatins the term \"mass action\".");
            }
        }