public void NaiveBayes_gaussian_jason_all_training_samples() { initData_dataset_gaussian_naive_bayes_jason_example(); BuildGaussianNaiveBayes bnb = new BuildGaussianNaiveBayes(); ModelBase model = (ModelBase)bnb.BuildModel (_trainingData, _attributeHeaders, _indexTargetAttribute); double[] data; double value; int count = 0; data = new double[_trainingData.Length - 1]; for (int row = 0; row < _trainingData[0].Length; row++) { for (int col = 0; col < _trainingData.Length - 1; col++) { data[col] = _trainingData[col][row]; } value = model.RunModelForSingleData(data); if (value == _trainingData[_indexTargetAttribute][row]) { count++; } } Assert.AreEqual(count, 10); }
public void NaiveBayes_gaussian_jason_single_training_sample_positive() { initData_dataset_gaussian_naive_bayes_jason_example(); BuildGaussianNaiveBayes bnb = new BuildGaussianNaiveBayes(); ModelBase model = (ModelBase)bnb.BuildModel (_trainingData, _attributeHeaders, _indexTargetAttribute); double[] data; double value; data = GetSingleTrainingRowDataForTest(0); value = model.RunModelForSingleData(data); Assert.AreEqual(value, _trainingData[_indexTargetAttribute][0]); }