예제 #1
0
        public static void computeConsistency(LangDescriptor language, bool report)
        {
            if (report)
            {
                Console.WriteLine("-----------------------------------");
                Console.WriteLine(language.name);
                Console.WriteLine("-----------------------------------");
            }
            Corpus corpus = new Corpus(language.corpusDir, language);

            corpus.train();
            // a map of feature vector to list of exemplar indexes of that feature
            MyMultiMap <FeatureVectorAsObject, int> wsContextToIndex   = new MyMultiMap <FeatureVectorAsObject, int>();
            MyMultiMap <FeatureVectorAsObject, int> hposContextToIndex = new MyMultiMap <FeatureVectorAsObject, int>();

            int n = corpus.featureVectors.Count;

            for (int i = 0; i < n; i++)
            {
                int[] features = corpus.featureVectors[i];
                wsContextToIndex.Map(new FeatureVectorAsObject(features, Trainer.FEATURES_INJECT_WS), i);
                hposContextToIndex.Map(new FeatureVectorAsObject(features, Trainer.FEATURES_HPOS), i);
            }

            int num_ambiguous_ws_vectors   = 0;
            int num_ambiguous_hpos_vectors = 0;

            // Dump output grouped by ws vs hpos then feature vector then category
            if (report)
            {
                Console.WriteLine(" --- INJECT WS ---");
            }
            IList <double> ws_entropies = new List <double>();

            foreach (FeatureVectorAsObject fo in wsContextToIndex.Keys)
            {
                var exemplarIndexes = wsContextToIndex[fo];

                // we have group by feature vector, now group by cat with that set for ws
                MyMultiMap <int, int> wsCatToIndexes = new MyMultiMap <int, int>();
                foreach (int i in exemplarIndexes)
                {
                    wsCatToIndexes.Map(corpus.injectWhitespace[i], i);
                }
                if (wsCatToIndexes.Count == 1)
                {
                    continue;
                }
                if (report)
                {
                    Console.WriteLine("Feature vector has " + exemplarIndexes.size() + " exemplars");
                }
                IList <int> catCounts = BuffUtils.map(wsCatToIndexes.Values, (x) => x.size());
                double      wsEntropy = Entropy.getNormalizedCategoryEntropy(Entropy.getCategoryRatios(catCounts));
                if (report)
                {
                    Console.Write("entropy={0,5:F4}\n", wsEntropy);
                }
                wsEntropy *= exemplarIndexes.size();
                ws_entropies.Add(wsEntropy);
                num_ambiguous_ws_vectors += exemplarIndexes.size();
                if (report)
                {
                    Console.Write(Trainer.featureNameHeader(Trainer.FEATURES_INJECT_WS));
                }

                if (report)
                {
                    foreach (int cat in wsCatToIndexes.Keys)
                    {
                        var indexes = wsCatToIndexes[cat];
                        foreach (int i in indexes)
                        {
                            string display = getExemplarDisplay(Trainer.FEATURES_INJECT_WS, corpus, corpus.injectWhitespace, i);
                            Console.WriteLine(display);
                        }
                        Console.WriteLine();
                    }
                }
            }

            if (report)
            {
                Console.WriteLine(" --- HPOS ---");
            }
            IList <double> hpos_entropies = new List <double>();

            foreach (FeatureVectorAsObject fo in hposContextToIndex.Keys)
            {
                MyHashSet <int> exemplarIndexes = hposContextToIndex[fo];

                // we have group by feature vector, now group by cat with that set for hpos
                MyMultiMap <int, int> hposCatToIndexes = new MyMultiMap <int, int>();
                foreach (int i in exemplarIndexes)
                {
                    hposCatToIndexes.Map(corpus.hpos[i], i);
                }
                if (hposCatToIndexes.Count == 1)
                {
                    continue;
                }
                if (report)
                {
                    Console.WriteLine("Feature vector has " + exemplarIndexes.size() + " exemplars");
                }
                IList <int> catCounts   = BuffUtils.map(hposCatToIndexes.Values, (x) => x.size());
                double      hposEntropy = Entropy.getNormalizedCategoryEntropy(Entropy.getCategoryRatios(catCounts));
                if (report)
                {
                    Console.Write("entropy={0,5:F4}\n", hposEntropy);
                }
                hposEntropy *= exemplarIndexes.size();
                hpos_entropies.Add(hposEntropy);
                num_ambiguous_hpos_vectors += exemplarIndexes.size();
                if (report)
                {
                    Console.Write(Trainer.featureNameHeader(Trainer.FEATURES_HPOS));
                }

                if (report)
                {
                    foreach (int cat in hposCatToIndexes.Keys)
                    {
                        var indexes = hposCatToIndexes[cat];
                        foreach (int?i in indexes)
                        {
                            string display = getExemplarDisplay(Trainer.FEATURES_HPOS, corpus, corpus.hpos, i.Value);
                            Console.WriteLine(display);
                        }
                        Console.WriteLine();
                    }
                }
            }
            Console.WriteLine();
            Console.WriteLine(language.name);
            Console.WriteLine("There are " + wsContextToIndex.Count + " unique ws feature vectors out of " + n + " = " + string.Format("{0,3:F1}%", 100.0 * wsContextToIndex.Count / n));
            Console.WriteLine("There are " + hposContextToIndex.Count + " unique hpos feature vectors out of " + n + " = " + string.Format("{0,3:F1}%", 100.0 * hposContextToIndex.Count / n));
            float prob_ws_ambiguous = num_ambiguous_ws_vectors / (float)n;

            Console.Write("num_ambiguous_ws_vectors   = {0,5:D}/{1,5:D} = {2,5:F3}\n", num_ambiguous_ws_vectors, n, prob_ws_ambiguous);
            float prob_hpos_ambiguous = num_ambiguous_hpos_vectors / (float)n;

            Console.Write("num_ambiguous_hpos_vectors = {0,5:D}/{1,5:D} = {2,5:F3}\n", num_ambiguous_hpos_vectors, n, prob_hpos_ambiguous);
            //		Collections.sort(ws_entropies);
            //		System.out.println("ws_entropies="+ws_entropies);
            Console.WriteLine("ws median,mean = " + BuffUtils.median(ws_entropies) + "," + BuffUtils.mean(ws_entropies));
            double expected_ws_entropy = (BuffUtils.sumDoubles(ws_entropies) / num_ambiguous_ws_vectors) * prob_ws_ambiguous;

            Console.WriteLine("expected_ws_entropy=" + expected_ws_entropy);

            Console.WriteLine("hpos median,mean = " + BuffUtils.median(hpos_entropies) + "," + BuffUtils.mean(hpos_entropies));
            double expected_hpos_entropy = (BuffUtils.sumDoubles(hpos_entropies) / num_ambiguous_hpos_vectors) * prob_hpos_ambiguous;

            Console.WriteLine("expected_hpos_entropy=" + expected_hpos_entropy);
        }