/// <summary> /// A activation function for a neural network. /// </summary> /// <param name="d">The input to the function.</param> /// <returns>The ouput from the function.</returns> public double ActivationFunction(double input) { //return (BoundNumbers.Exp(input * 2.0) - 1) / (BoundNumbers.Exp(input * 2.0 + 1)); //Correction suggested by https://github.com/felipetavares return((BoundNumbers.Exp(input) - BoundNumbers.Exp(-input)) / (BoundNumbers.Exp(input) + BoundNumbers.Exp(-input))); }
public override double Activate(double input) { return(1.0 / (1 + BoundNumbers.Exp(-1.0 * input))); }
/// <summary> /// A activation function for a neural network. /// </summary> /// <param name="d">The input to the function.</param> /// <returns>The ouput from the function.</returns> public double ActivationFunction(double d) { return(1.0 / (1 + BoundNumbers.Exp(-1.0 * d))); }
public override double Activate(double input) { return((BoundNumbers.Exp(input * 2.0) - 1.0) / (BoundNumbers.Exp(input * 2.0) + 1.0)); }
/// <summary> /// A activation function for a neural network. /// </summary> /// <param name="d">The input to the function.</param> /// <returns>The ouput from the function.</returns> public double ActivationFunction(double d) { double result = (BoundNumbers.Exp(d * 2.0) - 1.0) / (BoundNumbers.Exp(d * 2.0) + 1.0); return(result); }