public void sha512_fast_test() { string sha512_input = "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"; byte[] sha512_correct_output = new byte[] { 0x8E, 0x95, 0x9B, 0x75, 0xDA, 0xE3, 0x13, 0xDA, 0x8C, 0xF4, 0xF7, 0x28, 0x14, 0xFC, 0x14, 0x3F, 0x8F, 0x77, 0x79, 0xC6, 0xEB, 0x9F, 0x7F, 0xA1, 0x72, 0x99, 0xAE, 0xAD, 0xB6, 0x88, 0x90, 0x18, 0x50, 0x1D, 0x28, 0x9E, 0x49, 0x00, 0xF7, 0xE4, 0x33, 0x1B, 0x99, 0xDE, 0xC4, 0xB5, 0x43, 0x3A, 0xC7, 0xD3, 0x29, 0xEE, 0xB6, 0xDD, 0x26, 0x54, 0x5E, 0x96, 0xE5, 0x5B, 0x87, 0x4B, 0xE9, 0x09 }; byte[] sha512_actual_output = new byte[64]; BouncyCastleDotNETSha512Provider sha512provider = new BouncyCastleDotNETSha512Provider(); sha512provider.calculateDigest(sha512_actual_output, Encoding.UTF8.GetBytes(sha512_input), sha512_input.Length); CollectionAssert.AreEqual(sha512_correct_output, sha512_actual_output, "SHA512 #1"); var tmp = Encoding.UTF8.GetBytes(sha512_input); tmp[111] ^= 1; sha512_input = Encoding.UTF8.GetString(tmp); sha512provider.calculateDigest(sha512_actual_output, Encoding.UTF8.GetBytes(sha512_input), sha512_input.Length); CollectionAssert.AreNotEqual(sha512_correct_output, sha512_actual_output, "SHA512 #2"); }
public void xeddsa_fast_test() { byte[] signature_correct = new byte[] { 0x11, 0xc7, 0xf3, 0xe6, 0xc4, 0xdf, 0x9e, 0x8a, 0x51, 0x50, 0xe1, 0xdb, 0x3b, 0x30, 0xf9, 0x2d, 0xe3, 0xa3, 0xb3, 0xaa, 0x43, 0x86, 0x56, 0x54, 0x5f, 0xa7, 0x39, 0x0f, 0x4b, 0xcc, 0x7b, 0xb2, 0x6c, 0x43, 0x1d, 0x9e, 0x90, 0x64, 0x3e, 0x4f, 0x0e, 0xaa, 0x0e, 0x9c, 0x55, 0x77, 0x66, 0xfa, 0x69, 0xad, 0xa5, 0x76, 0xd6, 0x3d, 0xca, 0xf2, 0xac, 0x32, 0x6c, 0x11, 0xd0, 0xb9, 0x77, 0x02, }; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[64]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; privkey[8] = 189; /* just so there's some bits set */ Sc_clamp.sc_clamp(privkey); /* Signature vector test */ Keygen.curve25519_keygen(pubkey, privkey); ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); xeddsa.xed25519_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); CollectionAssert.AreEqual(signature_correct, signature, "XEdDSA sign"); Assert.AreEqual(0, xeddsa.xed25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), "XEdDSA verify #1"); signature[0] ^= 1; Assert.AreNotEqual(0, xeddsa.xed25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), "XEdDSA verify #2"); }
public void curvesigs_fast_test() { byte[] signature_correct = new byte[] { 0xcf, 0x87, 0x3d, 0x03, 0x79, 0xac, 0x20, 0xe8, 0x89, 0x3e, 0x55, 0x67, 0xee, 0x0f, 0x89, 0x51, 0xf8, 0xdb, 0x84, 0x0d, 0x26, 0xb2, 0x43, 0xb4, 0x63, 0x52, 0x66, 0x89, 0xd0, 0x1c, 0xa7, 0x18, 0xac, 0x18, 0x9f, 0xb1, 0x67, 0x85, 0x74, 0xeb, 0xdd, 0xe5, 0x69, 0x33, 0x06, 0x59, 0x44, 0x8b, 0x0b, 0xd6, 0xc1, 0x97, 0x3f, 0x7d, 0x78, 0x0a, 0xb3, 0x95, 0x18, 0x62, 0x68, 0x03, 0xd7, 0x82, }; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[64]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; privkey[8] = 189; /* just so there's some bits set */ Sc_clamp.sc_clamp(privkey); /* Signature vector test */ Keygen.curve25519_keygen(pubkey, privkey); ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); Curve_sigs.curve25519_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); CollectionAssert.AreEqual(signature_correct, signature, "Curvesig sign"); Assert.AreEqual(0, Curve_sigs.curve25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), "Curvesig verify #1"); signature[0] ^= 1; Assert.AreNotEqual(0, Curve_sigs.curve25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), "Curvesig verify #2"); }
public void elligator_fast_test() { byte[] elligator_correct_output = new byte[] { 0x5f, 0x35, 0x20, 0x00, 0x1c, 0x6c, 0x99, 0x36, 0xa3, 0x12, 0x06, 0xaf, 0xe7, 0xc7, 0xac, 0x22, 0x4e, 0x88, 0x61, 0x61, 0x9b, 0xf9, 0x88, 0x72, 0x44, 0x49, 0x15, 0x89, 0x9d, 0x95, 0xf4, 0x6e }; byte[] hashtopoint_correct_output1 = new byte[] { 0xce, 0x89, 0x9f, 0xb2, 0x8f, 0xf7, 0x20, 0x91, 0x5e, 0x14, 0xf5, 0xb7, 0x99, 0x08, 0xab, 0x17, 0xaa, 0x2e, 0xe2, 0x45, 0xb4, 0xfc, 0x2b, 0xf6, 0x06, 0x36, 0x29, 0x40, 0xed, 0x7d, 0xe7, 0xed }; byte[] hashtopoint_correct_output2 = new byte[] { 0xa0, 0x35, 0xbb, 0xa9, 0x4d, 0x30, 0x55, 0x33, 0x0d, 0xce, 0xc2, 0x7f, 0x83, 0xde, 0x79, 0xd0, 0x89, 0x67, 0x72, 0x4c, 0x07, 0x8d, 0x68, 0x9d, 0x61, 0x52, 0x1d, 0xf9, 0x2c, 0x5c, 0xba, 0x77 }; byte[] calculatev_correct_output = new byte[] { 0x1b, 0x77, 0xb5, 0xa0, 0x44, 0x84, 0x7e, 0xb9, 0x23, 0xd7, 0x93, 0x18, 0xce, 0xc2, 0xc5, 0xe2, 0x84, 0xd5, 0x79, 0x6f, 0x65, 0x63, 0x1b, 0x60, 0x9b, 0xf1, 0xf8, 0xce, 0x88, 0x0b, 0x50, 0x9c, }; int count; int[] iIn = new int[10]; int[] iOut = new int[10]; byte[] bytes = new byte[32]; Fe_0.fe_0(iIn); Fe_0.fe_0(iOut); for (count = 0; count < 32; count++) { bytes[count] = (byte)count; } Fe_frombytes.fe_frombytes(iIn, bytes); Elligator.elligator(iOut, iIn); Fe_tobytes.fe_tobytes(bytes, iOut); CollectionAssert.AreEqual(elligator_correct_output, bytes, "Elligator vector"); /* Elligator(0) == 0 test */ Fe_0.fe_0(iIn); Elligator.elligator(iOut, iIn); CollectionAssert.AreEqual(iOut, iIn, "Elligator(0) == 0"); /* ge_montx_to_p3(0) -> order2 point test */ int[] one = new int[10]; int[] negone = new int[10]; int[] zero = new int[10]; Fe_1.fe_1(one); Fe_0.fe_0(zero); Fe_sub.fe_sub(negone, zero, one); Ge_p3 p3 = new Ge_p3(); Ge_montx_to_p3.ge_montx_to_p3(p3, zero, 0); Assert.IsTrue(Fe_isequal.fe_isequal(p3.X, zero) != 0 && Fe_isequal.fe_isequal(p3.Y, negone) != 0 && Fe_isequal.fe_isequal(p3.Z, one) != 0 && Fe_isequal.fe_isequal(p3.T, zero) != 0, "ge_montx_to_p3(0) == order 2 point"); /* Hash to point vector test */ byte[] htp = new byte[32]; for (count = 0; count < 32; count++) { htp[count] = (byte)count; } ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); Elligator.hash_to_point(sha512provider, p3, htp, 32); Ge_p3_tobytes.ge_p3_tobytes(htp, p3); CollectionAssert.AreEqual(hashtopoint_correct_output1, htp, "hash_to_point #1"); for (count = 0; count < 32; count++) { htp[count] = (byte)(count + 1); } Elligator.hash_to_point(sha512provider, p3, htp, 32); Ge_p3_tobytes.ge_p3_tobytes(htp, p3); CollectionAssert.AreEqual(hashtopoint_correct_output2, htp, "hash_to_point #2"); /* calculate_U vector test */ Ge_p3 Bv = new Ge_p3(); byte[] V = new byte[32]; byte[] Vbuf = new byte[200]; byte[] a = new byte[32]; byte[] A = new byte[32]; byte[] Vmsg = new byte[3]; Vmsg[0] = 0; Vmsg[1] = 1; Vmsg[2] = 2; for (count = 0; count < 32; count++) { a[count] = (byte)(8 + count); A[count] = (byte)(9 + count); } Sc_clamp.sc_clamp(a); Elligator.calculate_Bv_and_V(sha512provider, Bv, V, Vbuf, a, A, Vmsg, 3); CollectionAssert.AreEqual(calculatev_correct_output, V, "calculate_Bv_and_V vector"); }
public void vxeddsa_slow_test() { int iterations = 10000000; //int iterations = 100000; byte[] signature_10k_correct = new byte[] { 0xa1, 0x96, 0x96, 0xe5, 0x87, 0x3f, 0x6e, 0x5c, 0x2e, 0xd3, 0x73, 0xab, 0x04, 0x0c, 0x1f, 0x26, 0x3c, 0xca, 0x52, 0xc4, 0x7e, 0x49, 0xaa, 0xce, 0xb5, 0xd6, 0xa2, 0x29, 0x46, 0x3f, 0x1b, 0x54, 0x45, 0x94, 0x9b, 0x6c, 0x27, 0xf9, 0x2a, 0xed, 0x17, 0xa4, 0x72, 0xbf, 0x35, 0x37, 0xc1, 0x90, 0xac, 0xb3, 0xfd, 0x2d, 0xf1, 0x01, 0x05, 0xbe, 0x56, 0x5c, 0xaf, 0x63, 0x65, 0xad, 0x38, 0x04, 0x70, 0x53, 0xdf, 0x2b, 0xc1, 0x45, 0xc8, 0xee, 0x02, 0x0d, 0x2b, 0x22, 0x23, 0x7a, 0xbf, 0xfa, 0x43, 0x31, 0xb3, 0xac, 0x26, 0xd9, 0x76, 0xfc, 0xfe, 0x30, 0xa1, 0x7c, 0xce, 0x10, 0x67, 0x0e, }; byte[] signature_100k_correct = new byte[] { 0xc9, 0x11, 0x2b, 0x55, 0xfa, 0xc4, 0xb2, 0xfe, 0x00, 0x7d, 0xf6, 0x45, 0xcb, 0xd2, 0x73, 0xc9, 0x43, 0xba, 0x20, 0xf6, 0x9c, 0x18, 0x84, 0xef, 0x6c, 0x65, 0x7a, 0xdb, 0x49, 0xfc, 0x1e, 0xbe, 0x31, 0xb3, 0xe6, 0xa4, 0x68, 0x2f, 0xd0, 0x30, 0x81, 0xfc, 0x0d, 0xcd, 0x2d, 0x00, 0xab, 0xae, 0x9f, 0x08, 0xf0, 0x99, 0xff, 0x9f, 0xdc, 0x2d, 0x68, 0xd6, 0xe7, 0xe8, 0x44, 0x2a, 0x5b, 0x0e, 0x48, 0x67, 0xe2, 0x41, 0x4a, 0xd9, 0x0c, 0x2a, 0x2b, 0x4e, 0x66, 0x09, 0x87, 0xa0, 0x6b, 0x3b, 0xd1, 0xd9, 0xa3, 0xe3, 0xa5, 0x69, 0xed, 0xc1, 0x42, 0x03, 0x93, 0x0d, 0xbc, 0x7e, 0xe9, 0x08, }; byte[] signature_1m_correct = new byte[] { 0xf8, 0xb1, 0x20, 0xf2, 0x1e, 0x5c, 0xbf, 0x5f, 0xea, 0x07, 0xcb, 0xb5, 0x77, 0xb8, 0x03, 0xbc, 0xcb, 0x6d, 0xf1, 0xc1, 0xa5, 0x03, 0x05, 0x7b, 0x01, 0x63, 0x9b, 0xf9, 0xed, 0x3e, 0x57, 0x47, 0xd2, 0x5b, 0xf4, 0x7e, 0x7c, 0x45, 0xce, 0xfc, 0x06, 0xb3, 0xf4, 0x05, 0x81, 0x9f, 0x53, 0xb0, 0x18, 0xe3, 0xfa, 0xcb, 0xb2, 0x52, 0x3e, 0x57, 0xcb, 0x34, 0xcc, 0x81, 0x60, 0xb9, 0x0b, 0x04, 0x07, 0x79, 0xc0, 0x53, 0xad, 0xc4, 0x4b, 0xd0, 0xb5, 0x7d, 0x95, 0x4e, 0xbe, 0xa5, 0x75, 0x0c, 0xd4, 0xbf, 0xa7, 0xc0, 0xcf, 0xba, 0xe7, 0x7c, 0xe2, 0x90, 0xef, 0x61, 0xa9, 0x29, 0x66, 0x0d, }; byte[] signature_10m_correct = new byte[] { 0xf5, 0xa4, 0xbc, 0xec, 0xc3, 0x3d, 0xd0, 0x43, 0xd2, 0x81, 0x27, 0x9e, 0xf0, 0x4c, 0xbe, 0xf3, 0x77, 0x01, 0x56, 0x41, 0x0e, 0xff, 0x0c, 0xb9, 0x66, 0xec, 0x4d, 0xe0, 0xb7, 0x25, 0x63, 0x6b, 0x5c, 0x08, 0x39, 0x80, 0x4e, 0x37, 0x1b, 0x2c, 0x46, 0x6f, 0x86, 0x99, 0x1c, 0x4e, 0x31, 0x60, 0xdb, 0x4c, 0xfe, 0xc5, 0xa2, 0x4d, 0x71, 0x2b, 0xd6, 0xd0, 0xc3, 0x98, 0x88, 0xdb, 0x0e, 0x0c, 0x68, 0x4a, 0xd3, 0xc7, 0x56, 0xac, 0x8d, 0x95, 0x7b, 0xbd, 0x99, 0x50, 0xe8, 0xd3, 0xea, 0xf3, 0x7b, 0x26, 0xf2, 0xa2, 0x2b, 0x02, 0x58, 0xca, 0xbd, 0x2c, 0x2b, 0xf7, 0x77, 0x58, 0xfe, 0x09, }; int count; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[96]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; byte[] vrf_out = new byte[32]; for (int i = 0; i < 96; i++) { signature[i] = 3; } Debug.WriteLine("Pseudorandom VXEdDSA..."); for (count = 1; count <= iterations; count++) { byte[] b = new byte[64]; ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); sha512provider.calculateDigest(b, signature, 96); Array.Copy(b, 0, privkey, 0, 32); sha512provider.calculateDigest(b, privkey, 32); Array.Copy(b, 0, random, 0, 64); Sc_clamp.sc_clamp(privkey); Keygen.curve25519_keygen(pubkey, privkey); vxeddsa.vxed25510_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); Assert.AreEqual(0, vxeddsa.vxed25519_verify(sha512provider, vrf_out, signature, pubkey, msg, MSG_LEN), $"VXEdDSA verify failure #1 {count}"); if ((b[63] & 1) != 0) { signature[count % 96] ^= 1; } else { msg[count % MSG_LEN] ^= 1; } Assert.AreNotEqual(0, vxeddsa.vxed25519_verify(sha512provider, vrf_out, signature, pubkey, msg, MSG_LEN), $"VXEdDSA verify failure #2 {count}"); //if (count == 10000) // print_bytes("10K VXEdDSA", signature, 96); //if (count == 100000) // print_bytes("100K VXEdDSA", signature, 96); //if (count == 1000000) // print_bytes("1M VXEdDSA", signature, 96); //if (count == 10000000) // print_bytes("10M VXEdDSA", signature, 96); //if (count == 100000000) // print_bytes("100M VXEdDSA", signature, 96); if (count == 10000) { CollectionAssert.AreEqual(signature_10k_correct, signature, $"VXEdDSA 10K doesn't match {count}"); } if (count == 100000) { CollectionAssert.AreEqual(signature_100k_correct, signature, $"VXEdDSA 100K doesn't match {count}"); } if (count == 1000000) { CollectionAssert.AreEqual(signature_1m_correct, signature, $"VXEdDSA 1m doesn't match {count}"); } if (count == 10000000) { CollectionAssert.AreEqual(signature_10m_correct, signature, $"VXEdDSA 10m doesn't match {count}"); } /* * if (count == 100000000) { * if (memcmp(signature, signature_100m_correct, 96) != 0) * ERROR("VXEDDSA 100m doesn't match %d\n", count); * } */ } }
public void xeddsa_to_curvesigs_slow_test() { int iterations = 10000; byte[] signature_10k_correct = new byte[] { 0x33, 0x50, 0xa8, 0x68, 0xcd, 0x9e, 0x74, 0x99, 0xa3, 0x5c, 0x33, 0x75, 0x2b, 0x22, 0x03, 0xf8, 0xb5, 0x0f, 0xea, 0x8c, 0x33, 0x1c, 0x68, 0x8b, 0xbb, 0xf3, 0x31, 0xcf, 0x7c, 0x42, 0x37, 0x35, 0xa0, 0x0e, 0x15, 0xb8, 0x5d, 0x2b, 0xe1, 0xa2, 0x03, 0x77, 0x94, 0x3d, 0x13, 0x5c, 0xd4, 0x9b, 0x6a, 0x31, 0xf4, 0xdc, 0xfe, 0x24, 0xad, 0x54, 0xeb, 0xd2, 0x98, 0x47, 0xf1, 0xcc, 0xbf, 0x0d }; int count; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[96]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; for (int i = 0; i < 64; i++) { signature[i] = 2; } /* Signature random test */ Debug.WriteLine("Pseudorandom XEdDSA/Curvesigs..."); for (count = 1; count <= iterations; count++) { byte[] b = new byte[64]; ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); sha512provider.calculateDigest(b, signature, 64); Array.Copy(b, 0, privkey, 0, 32); sha512provider.calculateDigest(b, privkey, 32); Array.Copy(b, 0, random, 0, 64); Sc_clamp.sc_clamp(privkey); Keygen.curve25519_keygen(pubkey, privkey); xeddsa.xed25519_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); Assert.AreEqual(0, Curve_sigs.curve25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), $"XEdDSA/Curvesigs verify failure #1 {count}"); if ((b[63] & 1) != 0) { signature[count % 64] ^= 1; } else { msg[count % MSG_LEN] ^= 1; } Assert.AreNotEqual(0, Curve_sigs.curve25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), $"XEdDSA/Curvesigs verify failure #2 {count}"); if (count == 10000) { byte[] sig0 = new byte[64]; Array.Copy(signature, 0, sig0, 0, 64); CollectionAssert.AreEqual(signature_10k_correct, sig0, $"XEdDSA/Curvesigs signature 10K doesn't match {count}"); } if (count == 100000) { //utility.print_bytes("100K XEdDSA/C", signature, 64); } if (count == 1000000) { //utility.print_bytes("1M XEdDSA/C", signature, 64); } if (count == 10000000) { //utility.print_bytes("10M XEdDSA/C", signature, 64); } } }
public void xeddsa_slow_test() { int iterations = 10000; byte[] signature_10k_correct = new byte[] { 0x15, 0x29, 0x03, 0x38, 0x66, 0x16, 0xcd, 0x26, 0xbb, 0x3e, 0xec, 0xe2, 0x9f, 0x72, 0xa2, 0x5c, 0x7d, 0x05, 0xc9, 0xcb, 0x84, 0x3f, 0x92, 0x96, 0xb3, 0xfb, 0xb9, 0xdd, 0xd6, 0xed, 0x99, 0x04, 0xc1, 0xa8, 0x02, 0x16, 0xcf, 0x49, 0x3f, 0xf1, 0xbe, 0x69, 0xf9, 0xf1, 0xcc, 0x16, 0xd7, 0xdc, 0x6e, 0xd3, 0x78, 0xaa, 0x04, 0xeb, 0x71, 0x51, 0x9d, 0xe8, 0x7a, 0x5b, 0xd8, 0x49, 0x7b, 0x05, }; int count; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[96]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; for (int i = 0; i < 64; i++) { signature[i] = 1; } /* Signature random test */ Debug.WriteLine("Pseudorandom XEdDSA..."); for (count = 1; count <= iterations; count++) { byte[] b = new byte[64]; ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); sha512provider.calculateDigest(b, signature, 64); Array.Copy(b, 0, privkey, 0, 32); sha512provider.calculateDigest(b, privkey, 32); Array.Copy(b, 0, random, 0, 64); Sc_clamp.sc_clamp(privkey); Keygen.curve25519_keygen(pubkey, privkey); xeddsa.xed25519_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); Assert.AreEqual(0, xeddsa.xed25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), $"XEdDSA verify failure #1 {count}"); if ((b[63] & 1) != 0) { signature[count % 64] ^= 1; } else { msg[count % MSG_LEN] ^= 1; } Assert.AreNotEqual(0, xeddsa.xed25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), $"XEdDSA verify failure #2 {count}"); if (count == 10000) { byte[] sig0 = new byte[64]; Array.Copy(signature, 0, sig0, 0, 64); CollectionAssert.AreEqual(signature_10k_correct, sig0, $"XEdDSA signature 10K doesn't match {count}"); } } }
public void curvesigs_slow_test() { int iterations = 10000; byte[] signature_10k_correct = new byte[] { 0xfc, 0xba, 0x55, 0xc4, 0x85, 0x4a, 0x42, 0x25, 0x19, 0xab, 0x08, 0x8d, 0xfe, 0xb5, 0x13, 0xb6, 0x0d, 0x24, 0xbb, 0x16, 0x27, 0x55, 0x71, 0x48, 0xdd, 0x20, 0xb1, 0xcd, 0x2a, 0xd6, 0x7e, 0x35, 0xef, 0x33, 0x4c, 0x7b, 0x6d, 0x94, 0x6f, 0x52, 0xec, 0x43, 0xd7, 0xe6, 0x35, 0x24, 0xcd, 0x5b, 0x5d, 0xdc, 0xb2, 0x32, 0xc6, 0x22, 0x53, 0xf3, 0x38, 0x02, 0xf8, 0x28, 0x28, 0xc5, 0x65, 0x05, }; int count; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[64]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; /* Signature random test */ Debug.WriteLine("Pseudorandom curvesigs..."); for (count = 1; count <= iterations; count++) { byte[] b = new byte[64]; ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); sha512provider.calculateDigest(b, signature, 64); Array.Copy(b, 0, privkey, 0, 32); sha512provider.calculateDigest(b, privkey, 32); Array.Copy(b, 0, random, 0, 64); Sc_clamp.sc_clamp(privkey); Keygen.curve25519_keygen(pubkey, privkey); Curve_sigs.curve25519_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); Assert.AreEqual(0, Curve_sigs.curve25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), $"Curvesig verify failure #1 {count}"); if ((b[63] & 1) != 0) { signature[count % 64] ^= 1; } else { msg[count % MSG_LEN] ^= 1; } Assert.AreNotEqual(0, Curve_sigs.curve25519_verify(sha512provider, signature, pubkey, msg, MSG_LEN), $"Curvesig verify failure #2 {count}"); if (count == 10000) { CollectionAssert.AreEqual(signature_10k_correct, signature, $"Curvesig signature 10K doesn't match {count}"); } if (count == 100000) { //utility.print_bytes("100K curvesigs", signature, 64); } if (count == 1000000) { //utility.print_bytes("1M curvesigs", signature, 64); } if (count == 10000000) { //utility.print_bytes("10M curvesigs", signature, 64); } } }
public void vxeddsa_fast_test() { byte[] signature_correct = new byte[] { 0x23, 0xc6, 0xe5, 0x93, 0x3f, 0xcd, 0x56, 0x47, 0x7a, 0x86, 0xc9, 0x9b, 0x76, 0x2c, 0xb5, 0x24, 0xc3, 0xd6, 0x05, 0x55, 0x38, 0x83, 0x4d, 0x4f, 0x8d, 0xb8, 0xf0, 0x31, 0x07, 0xec, 0xeb, 0xa0, 0xa0, 0x01, 0x50, 0xb8, 0x4c, 0xbb, 0x8c, 0xcd, 0x23, 0xdc, 0x65, 0xfd, 0x0e, 0x81, 0xb2, 0x86, 0x06, 0xa5, 0x6b, 0x0c, 0x4f, 0x53, 0x6d, 0xc8, 0x8b, 0x8d, 0xc9, 0x04, 0x6e, 0x4a, 0xeb, 0x08, 0xce, 0x08, 0x71, 0xfc, 0xc7, 0x00, 0x09, 0xa4, 0xd6, 0xc0, 0xfd, 0x2d, 0x1a, 0xe5, 0xb6, 0xc0, 0x7c, 0xc7, 0x22, 0x3b, 0x69, 0x59, 0xa8, 0x26, 0x2b, 0x57, 0x78, 0xd5, 0x46, 0x0e, 0x0f, 0x05, }; const int MSG_LEN = 200; byte[] privkey = new byte[32]; byte[] pubkey = new byte[32]; byte[] signature = new byte[96]; byte[] msg = new byte[MSG_LEN]; byte[] random = new byte[64]; byte[] vrf_out = new byte[32]; byte[] vrf_outprev = new byte[32]; privkey[8] = 189; /* just so there's some bits set */ Sc_clamp.sc_clamp(privkey); /* Signature vector test */ Keygen.curve25519_keygen(pubkey, privkey); ISha512 sha512provider = new BouncyCastleDotNETSha512Provider(); vxeddsa.vxed25510_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); CollectionAssert.AreEqual(signature_correct, signature, "VXEdDSA sign"); Assert.AreEqual(0, vxeddsa.vxed25519_verify(sha512provider, vrf_out, signature, pubkey, msg, MSG_LEN), "VXEdDSA verify #1"); Array.Copy(vrf_out, 0, vrf_outprev, 0, 32); signature[0] ^= 1; Assert.AreNotEqual(0, vxeddsa.vxed25519_verify(sha512provider, vrf_out, signature, pubkey, msg, MSG_LEN), "VXEdDSA verify #2"); /* Test U */ byte[] sigprev = new byte[96]; Array.Copy(signature, 0, sigprev, 0, 96); sigprev[0] ^= 1; /* undo prev disturbance */ random[0] ^= 1; vxeddsa.vxed25510_sign(sha512provider, signature, privkey, msg, MSG_LEN, random); Assert.AreEqual(0, vxeddsa.vxed25519_verify(sha512provider, vrf_out, signature, pubkey, msg, MSG_LEN), "VXEdDSA verify #3"); byte[] vrf0 = new byte[32]; Array.Copy(vrf_outprev, 0, vrf0, 0, 32); byte[] vrfprev0 = new byte[32]; Array.Copy(vrf_out, 0, vrfprev0, 0, 32); CollectionAssert.AreEqual(vrfprev0, vrf0, "VXEdDSA VRF value unchanged"); byte[] sig32 = new byte[64]; Array.Copy(signature, 32, sig32, 0, 64); byte[] sigprev32 = new byte[64]; Array.Copy(sigprev, 32, sigprev32, 0, 64); CollectionAssert.AreNotEqual(sigprev32, sig32, "VXEdDSA (h, s) changed"); }