예제 #1
0
    private void BezierQuadraticTest(MyVector3 posA, MyVector3 posB, MyVector3 handle)
    {
        //Store the interpolated values so we later can display them
        List <Vector3> interpolatedValues = new List <Vector3>();

        //Loop between 0 and 1 in steps, where 1 step is minimum
        //So if steps is 5 then the line will be cut in 5 sections
        int steps = 10;

        float stepSize = 1f / (float)steps;

        float t = 0f;

        //+1 becuase wa also have to include the first point
        for (int i = 0; i < steps + 1; i++)
        {
            //Debug.Log(t);

            MyVector3 interpolatedValue = BezierQuadratic.GetPosition(posA, posB, handle, t);

            interpolatedValues.Add(interpolatedValue.ToVector3());

            t += stepSize;
        }


        //Display the curve
        DisplayInterpolation.DisplayCurve(interpolatedValues, useRandomColor: true);

        //Display the start and end values and the handle points
        DisplayInterpolation.DisplayHandle(handle.ToVector3(), posA.ToVector3());
        DisplayInterpolation.DisplayHandle(handle.ToVector3(), posB.ToVector3());



        //Display other related data
        //Get the forwrd dir of the point at t and display it
        MyVector3 forwardDir = BezierQuadratic.GetTangent(posA, posB, handle, tSliderValue);

        MyVector3 slidePos = BezierQuadratic.GetPosition(posA, posB, handle, tSliderValue);

        Gizmos.color = Color.blue;

        Gizmos.DrawRay(slidePos.ToVector3(), forwardDir.ToVector3());

        Gizmos.color = Color.red;

        Gizmos.DrawWireSphere(slidePos.ToVector3(), 0.15f);
    }
예제 #2
0
    private void BezierQuadraticTest_EqualSteps(MyVector3 posA, MyVector3 posB, MyVector3 handle)
    {
        //Create a curve which is the data structure used in the following calculations
        BezierQuadratic bezierQuadratic = new BezierQuadratic(posA, posB, handle);


        //Step 1. Calculate the length of the entire curve
        //This is needed to so we know how long we should walk each step
        float lengthNaive = InterpolationHelpMethods.GetLength_Naive(bezierQuadratic, steps: 20, tEnd: 1f);

        float lengthExact = InterpolationHelpMethods.GetLength_SimpsonsRule(bezierQuadratic, tStart: 0f, tEnd: 1f);

        //Debug.Log("Naive length: " + lengthNaive + " Exact length: " + lengthExact);


        //Step 2. Convert the t's to be percentage along the curve
        //Save the accurate t at each position on the curve
        List <float> accurateTs = new List <float>();

        int steps = 5;

        //Important not to confuse this with the step size we use to iterate t
        //This step size is distance in m
        float length = lengthNaive;

        float lengthStepSize = length / (float)steps;

        float stepSize = 1f / (float)steps;

        float t = 0f;

        float distanceTravelled = 0f;

        for (int i = 0; i < steps + 1; i++)
        {
            //MyVector3 inaccuratePos = bezierCubic.GetInterpolatedValue(t);

            //Calculate t to get to this distance
            //Method 1
            //float accurateT = InterpolationHelpMethods.Find_t_FromDistance_Iterative(bezierQuadratic, distanceTravelled, length);
            //Method 2
            float accurateT = InterpolationHelpMethods.Find_t_FromDistance_Lookup(bezierQuadratic, distanceTravelled, accumulatedDistances: null);

            accurateTs.Add(accurateT);

            //Test that the derivative calculations are working
            //float dEst = InterpolationHelpMethods.EstimateDerivative(bezierQuadratic, t);
            //float dAct = bezierQuadratic.GetDerivative(t);

            //Debug.Log("Estimated derivative: " + dEst + " Actual derivative: " + dAct);



            //Debug.Log("Distance " + distanceTravelled);

            //Move on to next iteration
            distanceTravelled += lengthStepSize;

            t += stepSize;
        }


        //Get the data we want from the curve

        //Store the interpolated values so we later can display them
        List <Vector3> actualPositions = new List <Vector3>();
        //
        List <Vector3> tangents = new List <Vector3>();
        //Orientation, which includes the tangent and position
        List <InterpolationTransform> orientations = new List <InterpolationTransform>();

        for (int i = 0; i < accurateTs.Count; i++)
        {
            float accurateT = accurateTs[i];

            MyVector3 actualPos = bezierQuadratic.GetPosition(accurateT);

            actualPositions.Add(actualPos.ToVector3());


            MyVector3 tangent = bezierQuadratic.GetTangent(accurateT);

            tangents.Add(tangent.ToVector3());


            //Orientation, which includes both position and tangent
            InterpolationTransform orientation = InterpolationTransform.GetTransform_UpRef(bezierQuadratic, accurateT, MyVector3.Up);

            orientations.Add(orientation);
        }



        //Display

        //Unity doesnt have a built-in method to display an accurate Qudratic bezier, so we have to create our own
        //DisplayInterpolation.DisplayBezierQuadratic(bezierQuadratic, Color.black);
        DisplayInterpolation.DisplayCurve(bezierQuadratic, Color.black);

        //DisplayInterpolation.DisplayCurve(actualPositions, useRandomColor: true);
        DisplayInterpolation.DisplayCurve(actualPositions, Color.gray);

        //Display the start and end values and the handle points
        DisplayInterpolation.DisplayHandle(handle.ToVector3(), posA.ToVector3());
        DisplayInterpolation.DisplayHandle(handle.ToVector3(), posB.ToVector3());


        //Stuff on the curve
        //DisplayInterpolation.DisplayDirections(actualPositions, tangents, 1f, Color.red);

        DisplayInterpolation.DisplayOrientations(orientations, 1f);
    }