public static void SaveAll() { if (BatchStart != null) { BatchStart.Invoke(All, EventArgs.Empty); } All.ForEach(m => m.Save()); if (BatchEnd != null) { BatchEnd.Invoke(All, EventArgs.Empty); } }
private double TrainBatches(Matrix trainingData, Matrix labels, int batchSize, int epoch) { int currentIndex = 0; int currentBatch = 1; List <double> batchLosses = new List <double>();; //Loop untill the data is exhauted for every batch selected while (trainingData.CanSliceRows(currentIndex, batchSize)) { //Get the batch data based on the specified batch size var xtrain = trainingData.SliceRows(currentIndex, batchSize); var ytrain = labels.SliceRows(currentIndex, batchSize); //Run forward for all the layers to predict the value for the training set var ypred = Forward(xtrain); //Find the loss/cost value for the prediction wrt expected result var costVal = Cost.Forward(ypred, ytrain); batchLosses.Add(costVal.Data[0]); //Get the gradient of the cost function which is then passed to the layers during back-propagation var grad = Cost.Backward(ypred, ytrain); //Run back-propagation accross all the layers Backward(grad); //Now time to update the neural network weights using the specified optimizer function foreach (var layer in Layers) { Optimiser.Update(layer); } currentIndex = currentIndex + batchSize; double batchLossAvg = Math.Round(costVal.Data[0], 3); BatchEndEventArgs eventArgs1 = new BatchEndEventArgs(epoch, currentBatch, batchLossAvg); BatchEnd?.Invoke(epoch, eventArgs1); currentBatch += 1; } return(Math.Round(batchLosses.Average(), 3)); }
/// <summary> /// Train the model with training dataset, for certain number of iterations and using batch size /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <param name="numIterations"></param> /// <param name="batchSize"></param> public void Train(NDArray x, NDArray y, int numIterations, int batchSize) { //Initialise bacch loss and metric list for temporary holding of result List <double> batchLoss = new List <double>(); List <double> batchMetrics = new List <double>(); //Loop through till the end of specified iterations for (int i = 1; i <= numIterations; i++) { //Initialize local variables int currentIndex = 0; batchLoss.Clear(); batchMetrics.Clear(); //Loop untill the data is exhauted for every batch selected while (x.Next(currentIndex, batchSize)) { //Get the batch data based on the specified batch size var xtrain = x.Slice(currentIndex, batchSize); var ytrain = y.Slice(currentIndex, batchSize); //Run forward for all the layers to predict the value for the training set var ypred = Forward(xtrain); //Find the loss/cost value for the prediction wrt expected result var costVal = Cost.Forward(ypred, ytrain); batchLoss.AddRange(costVal.Data); //Find the metric value for the prediction wrt expected result if (Metric != null) { var metric = Metric.Calculate(ypred, ytrain); batchMetrics.AddRange(metric.Data); } //Get the gradient of the cost function which is the passed to the layers during back-propagation var grad = Cost.Backward(ypred, ytrain); //Run back-propagation accross all the layers Backward(grad); //Now time to update the neural network weights using the specified optimizer function foreach (var layer in Layers) { Optimizer.Update(i, layer); } currentIndex = currentIndex + batchSize;; } //Collect the result and fire the event double batchLossAvg = Math.Round(batchLoss.Average(), 2); double batchMetricAvg = Metric != null?Math.Round(batchMetrics.Average(), 2) : 0; TrainingLoss.Add(batchLossAvg); if (batchMetrics.Count > 0) { TrainingMetrics.Add(batchMetricAvg); } EpochEndEventArgs eventArgs = new EpochEndEventArgs(i, batchLossAvg, batchMetricAvg); BatchEnd?.Invoke(i, eventArgs); } }
/// <summary> /// Called when [batch end]. /// </summary> /// <param name="epoch">The epoch.</param> /// <param name="batch">The batch.</param> /// <param name="loss">The loss.</param> /// <param name="metric">The metric.</param> protected void OnBatchEnd(int epoch, int batch, float loss, float metric) { BatchEnd?.Invoke(this, new BatchEndEventArgs(epoch, batch, loss, metric)); }