public void TestGetInputTensors2() { var model = ModelLoader.Load(discrete1vis0vec_2_3action_recurrModel); var inputTensors = BarracudaModelParamLoader.GetInputTensors(model); var inputNames = inputTensors.Select(x => x.name).ToList(); // Model should contain 2 inputs : recurrent and visual 1 Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames); // TODO :There are some memory tensors as well }
public void TestGetInputTensors1() { var model = ModelLoader.Load(continuous2vis8vec2actionModel); var inputTensors = BarracudaModelParamLoader.GetInputTensors(model); var inputNames = inputTensors.Select(x => x.name).ToList(); // Model should contain 3 inputs : vector, visual 1 and visual 2 Assert.AreEqual(3, inputNames.Count); Assert.Contains(TensorNames.VectorObservationPlaceholder, inputNames); Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "0", inputNames); Assert.Contains(TensorNames.VisualObservationPlaceholderPrefix + "1", inputNames); Assert.AreEqual(2, BarracudaModelParamLoader.GetNumVisualInputs(model)); // Test if the model is null Assert.AreEqual(0, BarracudaModelParamLoader.GetInputTensors(null).Count); Assert.AreEqual(0, BarracudaModelParamLoader.GetNumVisualInputs(null)); }
/// <summary> /// Initializes the Brain with the Model that it will use when selecting actions for /// the agents /// </summary> /// <param name="seed"> The seed that will be used to initialize the RandomNormal /// and Multinomial obsjects used when running inference.</param> /// <exception cref="UnityAgentsException">Throws an error when the model is null /// </exception> public void ReloadModel(int seed = 0) { if (m_TensorAllocator == null) { m_TensorAllocator = new TensorCachingAllocator(); } if (model != null) { #if BARRACUDA_VERBOSE _verbose = true; #endif D.logEnabled = m_Verbose; // Cleanup previous instance if (m_Engine != null) { m_Engine.Dispose(); } m_BarracudaModel = ModelLoader.Load(model.Value); var executionDevice = inferenceDevice == InferenceDevice.GPU ? BarracudaWorkerFactory.Type.ComputePrecompiled : BarracudaWorkerFactory.Type.CSharp; m_Engine = BarracudaWorkerFactory.CreateWorker(executionDevice, m_BarracudaModel, m_Verbose); } else { m_BarracudaModel = null; m_Engine = null; } m_ModelParamLoader = BarracudaModelParamLoader.GetLoaderAndCheck(m_Engine, m_BarracudaModel, brainParameters); m_InferenceInputs = m_ModelParamLoader.GetInputTensors(); m_OutputNames = m_ModelParamLoader.GetOutputNames(); m_TensorGenerator = new TensorGenerator(brainParameters, seed, m_TensorAllocator, m_BarracudaModel); m_TensorApplier = new TensorApplier(brainParameters, seed, m_TensorAllocator, m_BarracudaModel); }