public void testWeightsAndBiasesUpdatedCorrectly() { Matrix weightMatrix1 = new Matrix(2, 1); weightMatrix1.set(0, 0, -0.27); weightMatrix1.set(1, 0, -0.41); Vector biasVector1 = new Vector(2); biasVector1.setValue(0, -0.48); biasVector1.setValue(1, -0.13); Layer layer1 = new Layer(weightMatrix1, biasVector1, new LogSigActivationFunction()); LayerSensitivity layer1Sensitivity = new LayerSensitivity(layer1); Vector inputVector1 = new Vector(1); inputVector1.setValue(0, 1); layer1.feedForward(inputVector1); Matrix weightMatrix2 = new Matrix(1, 2); weightMatrix2.set(0, 0, 0.09); weightMatrix2.set(0, 1, -0.17); Vector biasVector2 = new Vector(1); biasVector2.setValue(0, 0.48); Layer layer2 = new Layer(weightMatrix2, biasVector2, new PureLinearActivationFunction()); Vector inputVector2 = layer1.getLastActivationValues(); layer2.feedForward(inputVector2); Vector errorVector = new Vector(1); errorVector.setValue(0, 1.261); LayerSensitivity layer2Sensitivity = new LayerSensitivity(layer2); layer2Sensitivity.sensitivityMatrixFromErrorMatrix(errorVector); layer1Sensitivity .sensitivityMatrixFromSucceedingLayer(layer2Sensitivity); BackPropLearning.calculateWeightUpdates(layer2Sensitivity, layer1 .getLastActivationValues(), 0.1); BackPropLearning.calculateBiasUpdates(layer2Sensitivity, 0.1); BackPropLearning.calculateWeightUpdates(layer1Sensitivity, inputVector1, 0.1); BackPropLearning.calculateBiasUpdates(layer1Sensitivity, 0.1); layer2.updateWeights(); Matrix newWeightMatrix2 = layer2.getWeightMatrix(); Assert.AreEqual(0.171, newWeightMatrix2.get(0, 0), 0.001); Assert.AreEqual(-0.0772, newWeightMatrix2.get(0, 1), 0.001); layer2.updateBiases(); Vector newBiasVector2 = layer2.getBiasVector(); Assert.AreEqual(0.7322, newBiasVector2.getValue(0), 0.00001); layer1.updateWeights(); Matrix newWeightMatrix1 = layer1.getWeightMatrix(); Assert.AreEqual(-0.265, newWeightMatrix1.get(0, 0), 0.001); Assert.AreEqual(-0.419, newWeightMatrix1.get(1, 0), 0.001); layer1.updateBiases(); Vector newBiasVector1 = layer1.getBiasVector(); Assert.AreEqual(-0.475, newBiasVector1.getValue(0), 0.001); Assert.AreEqual(-0.139, newBiasVector1.getValue(1), 0.001); }
public void testWeightUpdateMatrixesFormedCorrectly() { Matrix weightMatrix1 = new Matrix(2, 1); weightMatrix1.set(0, 0, -0.27); weightMatrix1.set(1, 0, -0.41); Vector biasVector1 = new Vector(2); biasVector1.setValue(0, -0.48); biasVector1.setValue(1, -0.13); Layer layer1 = new Layer(weightMatrix1, biasVector1, new LogSigActivationFunction()); LayerSensitivity layer1Sensitivity = new LayerSensitivity(layer1); Vector inputVector1 = new Vector(1); inputVector1.setValue(0, 1); layer1.feedForward(inputVector1); Matrix weightMatrix2 = new Matrix(1, 2); weightMatrix2.set(0, 0, 0.09); weightMatrix2.set(0, 1, -0.17); Vector biasVector2 = new Vector(1); biasVector2.setValue(0, 0.48); Layer layer2 = new Layer(weightMatrix2, biasVector2, new PureLinearActivationFunction()); Vector inputVector2 = layer1.getLastActivationValues(); layer2.feedForward(inputVector2); Vector errorVector = new Vector(1); errorVector.setValue(0, 1.261); LayerSensitivity layer2Sensitivity = new LayerSensitivity(layer2); layer2Sensitivity.sensitivityMatrixFromErrorMatrix(errorVector); layer1Sensitivity .sensitivityMatrixFromSucceedingLayer(layer2Sensitivity); Matrix weightUpdateMatrix2 = BackPropLearning.calculateWeightUpdates( layer2Sensitivity, layer1.getLastActivationValues(), 0.1); Assert.AreEqual(0.0809, weightUpdateMatrix2.get(0, 0), 0.001); Assert.AreEqual(0.0928, weightUpdateMatrix2.get(0, 1), 0.001); Matrix lastWeightUpdateMatrix2 = layer2.getLastWeightUpdateMatrix(); Assert.AreEqual(0.0809, lastWeightUpdateMatrix2.get(0, 0), 0.001); Assert.AreEqual(0.0928, lastWeightUpdateMatrix2.get(0, 1), 0.001); Matrix penultimateWeightUpdatematrix2 = layer2 .getPenultimateWeightUpdateMatrix(); Assert.AreEqual(0.0, penultimateWeightUpdatematrix2.get(0, 0), 0.001); Assert.AreEqual(0.0, penultimateWeightUpdatematrix2.get(0, 1), 0.001); Matrix weightUpdateMatrix1 = BackPropLearning.calculateWeightUpdates( layer1Sensitivity, inputVector1, 0.1); Assert.AreEqual(0.0049, weightUpdateMatrix1.get(0, 0), 0.001); Assert.AreEqual(-0.00997, weightUpdateMatrix1.get(1, 0), 0.001); Matrix lastWeightUpdateMatrix1 = layer1.getLastWeightUpdateMatrix(); Assert.AreEqual(0.0049, lastWeightUpdateMatrix1.get(0, 0), 0.001); Assert.AreEqual(-0.00997, lastWeightUpdateMatrix1.get(1, 0), 0.001); Matrix penultimateWeightUpdatematrix1 = layer1 .getPenultimateWeightUpdateMatrix(); Assert.AreEqual(0.0, penultimateWeightUpdatematrix1.get(0, 0), 0.001); Assert.AreEqual(0.0, penultimateWeightUpdatematrix1.get(1, 0), 0.001); }