/// <summary>Performs a symmetric rank-k update, i.e. C:= \alpha*A*A^t + \beta *C or C:= \alpha*A^t*A + \beta*C.
 /// </summary>
 /// <param name="level3">The BLAS level 3 implementation.</param>
 /// <param name="n">The order of matrix C.</param>
 /// <param name="k">The number of columns of matrix A if to calculate C:= \alpha*A*A^t + \beta *C; otherwise the number of rows of matrix A.</param>
 /// <param name="alpha">The scalar \alpha.</param>
 /// <param name="a">The matrix A supplied column-by-column of dimension (s, ka), where s must be at least max(1,<paramref name="n"/>) and ka is <paramref name="k"/> if to calculate C:= \alpha*A*A^t + \beta *C; s at least max(1,<paramref name="k"/>) and ka <paramref name="n"/> otherwise.</param>
 /// <param name="beta">The scalar \beta.</param>
 /// <param name="c">The symmetric matrix C supplied column-by-column of dimension (<paramref name="n"/>, <paramref name="n"/>).</param>
 /// <param name="triangularMatrixType">A value whether matrix C is in its upper or lower triangular representation.</param>
 /// <param name="operation">A value indicating whether to calculate C:= \alpha*A*A^t + \beta *C or C:= \alpha*A^t*A + \beta*C.</param>
 public static void zsyrk(this ILevel3BLAS level3, int n, int k, Complex alpha, Complex[] a, Complex beta, Complex[] c, BLAS.TriangularMatrixType triangularMatrixType = BLAS.TriangularMatrixType.UpperTriangularMatrix, BLAS.XsyrkOperation operation = BLAS.XsyrkOperation.ATimesATranspose)
 {
     level3.zsyrk(n, k, alpha, a, beta, c, operation == BLAS.XsyrkOperation.ATimesATranspose ? n : k, n, triangularMatrixType, operation);
 }
예제 #2
0
 /// <summary>Performs a symmetric rank-k update, i.e. C:= \alpha*A*A^t + \beta *C or C:= \alpha*A^t*A + \beta*C.
 /// </summary>
 /// <param name="n">The order of matrix C.</param>
 /// <param name="k">The number of columns of matrix A if to calculate C:= \alpha*A*A^t + \beta *C; otherwise the number of rows of matrix A.</param>
 /// <param name="alpha">The scalar \alpha.</param>
 /// <param name="a">The matrix A supplied column-by-column of dimension (<paramref name="lda" />, ka), where ka is <paramref name="k" /> if to calculate C:= \alpha*A*A^t + \beta *C; otherwise <paramref name="n" />.</param>
 /// <param name="beta">The scalar \beta.</param>
 /// <param name="c">The symmetric matrix C supplied column-by-column of dimension (<paramref name="ldc" />, <paramref name="n" />).</param>
 /// <param name="lda">The leading dimension of <paramref name="a" />, must be at least max(1,<paramref name="n" />) if to calculate C:= \alpha*A*A^t + \beta *C; max(1,<paramref name="k" />) otherwise.</param>
 /// <param name="ldc">The leading dimension of <paramref name="c" />, must be at least max(1,<paramref name="n" />).</param>
 /// <param name="triangularMatrixType">A value whether matrix C is in its upper or lower triangular representation.</param>
 /// <param name="operation">A value indicating whether to calculate C:= \alpha*A*A^t + \beta *C or C:= \alpha*A^t*A + \beta*C.</param>
 public void zsyrk(int n, int k, Complex alpha, Complex[] a, Complex beta, Complex[] c, int lda, int ldc, BLAS.TriangularMatrixType triangularMatrixType = BLAS.TriangularMatrixType.UpperTriangularMatrix, BLAS.XsyrkOperation operation = BLAS.XsyrkOperation.ATimesATranspose)
 {
     if (operation == BLAS.XsyrkOperation.ATimesATranspose)
     {
         if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
         {
             for (int j = 0; j < n; j++)
             {
                 for (int i = 0; i <= j; i++)
                 {
                     c[i + j * ldc] *= beta;
                 }
                 for (int ell = 0; ell < k; ell++)
                 {
                     Complex temp = alpha * a[j + ell * lda];
                     for (int i = 0; i <= j; i++)
                     {
                         c[i + j * ldc] += temp * a[i + ell * lda];
                     }
                 }
             }
         }
         else
         {
             for (int j = 0; j < n; j++)
             {
                 for (int i = j; i < n; i++)
                 {
                     c[i + j * ldc] *= beta;
                 }
                 for (int ell = 0; ell < k; ell++)
                 {
                     Complex temp = alpha * a[j + ell * lda];
                     for (int i = j; i < n; i++)
                     {
                         c[i + j * ldc] += temp * a[i + ell * lda];
                     }
                 }
             }
         }
     }
     else  // C:= \alpha * A' * A + \beta * C
     {
         if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
         {
             for (int j = 0; j < n; j++)
             {
                 for (int i = 0; i <= j; i++)
                 {
                     Complex temp = 0.0;
                     for (int ell = 0; ell < k; ell++)
                     {
                         temp += a[ell + i * lda] * a[ell + j * lda];
                     }
                     c[i + j * ldc] = alpha * temp + beta * c[i + j * ldc];
                 }
             }
         }
         else
         {
             for (int j = 0; j < n; j++)
             {
                 for (int i = j; i < n; i++)
                 {
                     Complex temp = 0.0;
                     for (int ell = 0; ell < k; ell++)
                     {
                         temp += a[ell + i * lda] * a[ell + j * lda];
                     }
                     c[i + j * ldc] = alpha * temp + beta * c[i + j * ldc];
                 }
             }
         }
     }
 }
        /// <summary>Performs a symmetric rank-k update, i.e. C:= \alpha*A*A^t + \beta *C or C:= \alpha*A^t*A + \beta*C.
        /// </summary>
        /// <param name="n">The order of matrix C.</param>
        /// <param name="k">The number of columns of matrix A if to calculate C:= \alpha*A*A^t + \beta *C; otherwise the number of rows of matrix A.</param>
        /// <param name="alpha">The scalar \alpha.</param>
        /// <param name="a">The matrix A supplied column-by-column of dimension (<paramref name="lda"/>, ka), where ka is <paramref name="k"/> if to calculate C:= \alpha*A*A^t + \beta *C; otherwise <paramref name="n"/>.</param>
        /// <param name="beta">The scalar \beta.</param>
        /// <param name="c">The symmetric matrix C supplied column-by-column of dimension (<paramref name="ldc"/>, <paramref name="n"/>).</param>
        /// <param name="lda">The leading dimension of <paramref name="a"/>, must be at least max(1,<paramref name="n"/>) if to calculate C:= \alpha*A*A^t + \beta *C; max(1,<paramref name="k"/>) otherwise.</param>
        /// <param name="ldc">The leading dimension of <paramref name="c"/>, must be at least max(1,<paramref name="n"/>).</param>
        /// <param name="triangularMatrixType">A value whether matrix C is in its upper or lower triangular representation.</param>
        /// <param name="operation">A value indicating whether to calculate C:= \alpha*A*A^t + \beta *C or C:= \alpha*A^t*A + \beta*C.</param>
        public void dsyrk(int n, int k, double alpha, double[] a, double beta, double[] c, int lda, int ldc, BLAS.TriangularMatrixType triangularMatrixType = BLAS.TriangularMatrixType.UpperTriangularMatrix, BLAS.XsyrkOperation operation = BLAS.XsyrkOperation.ATimesATranspose)
        {
            if (n == 0 || ((alpha == 0.0 || k == 0) && (beta == 1.0)))
            {
                return; // nothing to do
            }

            if (operation == BLAS.XsyrkOperation.ATimesATranspose)  // C = \alpha *A*A' + \beta * C
            {
                if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = 0; i <= j; i++)
                        {
                            c[i + j * ldc] = beta * c[i + j * ldc];
                        }

                        for (int ell = 0; ell < k; ell++)
                        {
                            double temp = alpha * a[j + ell * lda];
                            for (int i = 0; i <= j; i++)
                            {
                                c[i + j * ldc] += temp * a[i + ell * lda];
                            }
                        }
                    }
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = j; i < n; i++)
                        {
                            c[i + j * ldc] = beta * c[i + j * ldc];
                        }
                        for (int ell = 0; ell < k; ell++)
                        {
                            double temp = alpha * a[j + ell * lda];
                            for (int i = j; i < n; i++)
                            {
                                c[i + j * ldc] += temp * a[i + ell * lda];
                            }
                        }
                    }
                }
            }
            else // C = \alpha *A'*A + \beta *C
            {
                if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = 0; i <= j; i++)
                        {
                            double temp = 0.0;
                            for (int ell = 0; ell < k; ell++)
                            {
                                temp += a[ell + i * lda] * a[ell + j * lda];
                            }
                            c[i + j * ldc] = alpha * temp + beta * c[i + j * ldc];
                        }
                    }
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = j; i < n; i++)
                        {
                            double temp = 0.0;
                            for (int ell = 0; ell < k; ell++)
                            {
                                temp += a[ell + i * lda] * a[ell + j * lda];
                            }
                            c[i + j * ldc] = alpha * temp + beta * c[i + j * ldc];
                        }
                    }
                }
            }
        }