public void OVAWithAllConstructorArgs() { var(pipeline, data) = GetMultiClassPipeline(); var calibrator = new PlattCalibratorTrainer(Env); var averagePerceptron = new AveragedPerceptronTrainer(Env, "Label", "Features", advancedSettings: s => { s.Shuffle = true; s.Calibrator = null; }); pipeline = pipeline.Append(new Ova(Env, averagePerceptron, "Label", true, calibrator: calibrator, 10000, true)) .Append(new KeyToValueMappingEstimator(Env, "PredictedLabel")); TestEstimatorCore(pipeline, data); Done(); }
public void OnlineLinearWorkout() { var dataPath = GetDataPath("breast-cancer.txt"); var regressionData = TextLoaderStatic.CreateReader(ML, ctx => (Label: ctx.LoadFloat(0), Features: ctx.LoadFloat(1, 10))) .Read(dataPath); var regressionPipe = regressionData.MakeNewEstimator() .Append(r => (r.Label, Features: r.Features.Normalize())); var regressionTrainData = regressionPipe.Fit(regressionData).Transform(regressionData).AsDynamic; var ogdTrainer = new OnlineGradientDescentTrainer(ML, "Label", "Features"); TestEstimatorCore(ogdTrainer, regressionTrainData); var ogdModel = ogdTrainer.Fit(regressionTrainData); ogdTrainer.Train(regressionTrainData, ogdModel.Model); var binaryData = TextLoaderStatic.CreateReader(ML, ctx => (Label: ctx.LoadBool(0), Features: ctx.LoadFloat(1, 10))) .Read(dataPath); var binaryPipe = binaryData.MakeNewEstimator() .Append(r => (r.Label, Features: r.Features.Normalize())); var binaryTrainData = binaryPipe.Fit(binaryData).Transform(binaryData).AsDynamic; var apTrainer = new AveragedPerceptronTrainer(ML, "Label", "Features", lossFunction: new HingeLoss(), advancedSettings: s => { s.LearningRate = 0.5f; }); TestEstimatorCore(apTrainer, binaryTrainData); var apModel = apTrainer.Fit(binaryTrainData); apTrainer.Train(binaryTrainData, apModel.Model); var svmTrainer = new LinearSvmTrainer(ML, "Label", "Features"); TestEstimatorCore(svmTrainer, binaryTrainData); var svmModel = svmTrainer.Fit(binaryTrainData); svmTrainer.Train(binaryTrainData, apModel.Model); Done(); }
CalibratorTestData GetCalibratorTestData() { var(pipeline, data) = GetBinaryClassificationPipeline(); var binaryTrainer = new AveragedPerceptronTrainer(Env); pipeline = pipeline.Append(binaryTrainer); var transformer = pipeline.Fit(data); var scoredData = transformer.Transform(data); var scoredDataPreview = scoredData.Preview(); Assert.True(scoredDataPreview.ColumnView.Length == 5); return(new CalibratorTestData { data = data, scoredData = scoredData, pipeline = pipeline, transformer = ((TransformerChain <BinaryPredictionTransformer <LinearBinaryModelParameters> >)transformer).LastTransformer as BinaryPredictionTransformer <LinearBinaryModelParameters>, }); }
public void OnlineLinearWorkout() { var dataPath = GetDataPath("breast-cancer.txt"); var data = TextLoader.CreateReader(Env, ctx => (Label: ctx.LoadFloat(0), Features: ctx.LoadFloat(1, 10))) .Read(new MultiFileSource(dataPath)); var pipe = data.MakeNewEstimator() .Append(r => (r.Label, Features: r.Features.Normalize())); var trainData = pipe.Fit(data).Transform(data).AsDynamic; IEstimator <ITransformer> est = new OnlineGradientDescentTrainer(Env, new OnlineGradientDescentTrainer.Arguments()); TestEstimatorCore(est, trainData); est = new AveragedPerceptronTrainer(Env, new AveragedPerceptronTrainer.Arguments()); TestEstimatorCore(est, trainData); Done(); }
/// <summary> /// Predict a target using a linear binary classification model trained with the AveragedPerceptron trainer, and a custom loss. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="lossFunction">The custom loss.</param> /// <param name="weights">The optional example weights.</param> /// <param name="options">Advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), and the predicted label.</returns> /// <seealso cref="AveragedPerceptronTrainer"/>. /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[AveragedPerceptron](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Static/AveragedPerceptronBinaryClassification.cs)] /// ]]></format> /// </example> public static (Scalar <float> score, Scalar <bool> predictedLabel) AveragedPerceptron( this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights, IClassificationLoss lossFunction, AveragedPerceptronTrainer.Options options, Action <LinearBinaryModelParameters> onFit = null ) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckValueOrNull(options); Contracts.CheckValueOrNull(onFit); bool hasProbs = lossFunction is LogLoss; var rec = new TrainerEstimatorReconciler.BinaryClassifierNoCalibration( (env, labelName, featuresName, weightsName) => { options.LabelColumn = labelName; options.FeatureColumn = featuresName; options.InitialWeights = weightsName; var trainer = new AveragedPerceptronTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } else { return(trainer); } }, label, features, weights, hasProbs); return(rec.Output); }
public void OVAWithAllConstructorArgs() { var dataPath = GetDataPath(IrisDataPath); string featNam = "Features"; string labNam = "Label"; using (var env = new TlcEnvironment()) { var calibrator = new FixedPlattCalibratorTrainer(env, new FixedPlattCalibratorTrainer.Arguments()); var data = new TextLoader(env, GetIrisLoaderArgs()).Read(new MultiFileSource(dataPath)); var averagePerceptron = new AveragedPerceptronTrainer(env, new AveragedPerceptronTrainer.Arguments { FeatureColumn = featNam, LabelColumn = labNam, Shuffle = true, Calibrator = null }); var pipeline = new TermEstimator(env, labNam) .Append(new Ova(env, averagePerceptron, labNam, true, calibrator: calibrator, 10000, true)) .Append(new KeyToValueEstimator(env, "PredictedLabel")); TestEstimatorCore(pipeline, data); } }
public void New_TrainWithInitialPredictor() { using (var env = new LocalEnvironment(seed: 1, conc: 1)) { var data = new TextLoader(env, MakeSentimentTextLoaderArgs()).Read(new MultiFileSource(GetDataPath(TestDatasets.Sentiment.trainFilename))); // Pipeline. var pipeline = new TextTransform(env, "SentimentText", "Features"); // Train the pipeline, prepare train set. var trainData = pipeline.FitAndTransform(data); // Train the first predictor. var trainer = new LinearClassificationTrainer(env, "Features", "Label", advancedSettings: (s) => s.NumThreads = 1); var firstModel = trainer.Fit(trainData); // Train the second predictor on the same data. var secondTrainer = new AveragedPerceptronTrainer(env, "Label", "Features"); var trainRoles = new RoleMappedData(trainData, label: "Label", feature: "Features"); var finalModel = secondTrainer.Train(new TrainContext(trainRoles, initialPredictor: firstModel.Model)); } }
public void TrainWithInitialPredictor() { using (var env = new LocalEnvironment(seed: 1, conc: 1)) { // Pipeline var loader = TextLoader.ReadFile(env, MakeSentimentTextLoaderArgs(), new MultiFileSource(GetDataPath(TestDatasets.Sentiment.trainFilename))); var trans = TextTransform.Create(env, MakeSentimentTextTransformArgs(), loader); var trainData = trans; var cachedTrain = new CacheDataView(env, trainData, prefetch: null); // Train the first predictor. var trainer = new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments { NumThreads = 1 }); var trainRoles = new RoleMappedData(cachedTrain, label: "Label", feature: "Features"); var predictor = trainer.Train(new Runtime.TrainContext(trainRoles)); // Train the second predictor on the same data. var secondTrainer = new AveragedPerceptronTrainer(env, "Label", "Features"); var finalPredictor = secondTrainer.Train(new TrainContext(trainRoles, initialPredictor: predictor)); } }
public void OnlineLinearWorkout() { var dataPath = GetDataPath("breast-cancer.txt"); var data = TextLoader.CreateReader(Env, ctx => (Label: ctx.LoadFloat(0), Features: ctx.LoadFloat(1, 10))) .Read(dataPath); var pipe = data.MakeNewEstimator() .Append(r => (r.Label, Features: r.Features.Normalize())); var trainData = pipe.Fit(data).Transform(data).AsDynamic; IEstimator <ITransformer> est = new OnlineGradientDescentTrainer(Env, "Label", "Features"); TestEstimatorCore(est, trainData); est = new AveragedPerceptronTrainer(Env, "Label", "Features", lossFunction: new HingeLoss.Arguments(), advancedSettings: s => { s.LearningRate = 0.5f; }); TestEstimatorCore(est, trainData); Done(); }
/// <summary> /// Predict a target using a linear binary classification model trained with the AveragedPerceptron trainer, and a custom loss. /// </summary> /// <param name="ctx">The binary classification context trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="lossFunction">The custom loss.</param> /// <param name="weights">The optional example weights.</param> /// <param name="learningRate">The learning Rate.</param> /// <param name="decreaseLearningRate">Decrease learning rate as iterations progress.</param> /// <param name="l2RegularizerWeight">L2 regularization weight.</param> /// <param name="numIterations">Number of training iterations through the data.</param> /// <param name="advancedSettings">A delegate to supply more avdanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), and the predicted label.</returns> /// <seealso cref="AveragedPerceptronTrainer"/>. /// <example> /// <format type="text/markdown"> /// <![CDATA[ /// [!code-csharp[AveragedPerceptron](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Static/AveragedPerceptronBinaryClassification.cs)] /// ]]></format> /// </example> public static (Scalar <float> score, Scalar <bool> predictedLabel) AveragedPerceptron( this BinaryClassificationContext.BinaryClassificationTrainers ctx, Scalar <bool> label, Vector <float> features, Scalar <float> weights = null, IClassificationLoss lossFunction = null, float learningRate = AveragedLinearArguments.AveragedDefaultArgs.LearningRate, bool decreaseLearningRate = AveragedLinearArguments.AveragedDefaultArgs.DecreaseLearningRate, float l2RegularizerWeight = AveragedLinearArguments.AveragedDefaultArgs.L2RegularizerWeight, int numIterations = AveragedLinearArguments.AveragedDefaultArgs.NumIterations, Action <AveragedPerceptronTrainer.Arguments> advancedSettings = null, Action <LinearBinaryModelParameters> onFit = null ) { OnlineLinearStaticUtils.CheckUserParams(label, features, weights, learningRate, l2RegularizerWeight, numIterations, onFit, advancedSettings); bool hasProbs = lossFunction is LogLoss; var rec = new TrainerEstimatorReconciler.BinaryClassifierNoCalibration( (env, labelName, featuresName, weightsName) => { var trainer = new AveragedPerceptronTrainer(env, labelName, featuresName, weightsName, lossFunction, learningRate, decreaseLearningRate, l2RegularizerWeight, numIterations, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } else { return(trainer); } }, label, features, weights, hasProbs); return(rec.Output); }
public MyAveragedPerceptron(IHostEnvironment env, AveragedPerceptronTrainer.Arguments args, string featureCol, string labelCol) : base(env, new TrainerInfo(caching: false), featureCol, labelCol) { _trainer = new AveragedPerceptronTrainer(env, args); }
private void MixMatch(string dataPath) { // Create a new environment for ML.NET operations. It can be used for exception tracking and logging, // as well as the source of randomness. var env = new LocalEnvironment(); // Read the data as an IDataView. // First, we define the reader: specify the data columns and where to find them in the text file. var reader = TextLoader.CreateReader(env, ctx => ( // The four features of the Iris dataset. SepalLength: ctx.LoadFloat(0), SepalWidth: ctx.LoadFloat(1), PetalLength: ctx.LoadFloat(2), PetalWidth: ctx.LoadFloat(3), // Label: kind of iris. Label: ctx.LoadText(4) ), // Default separator is tab, but the dataset has comma. separator: ','); // Read the data. var data = reader.Read(new MultiFileSource(dataPath)); // Build the pre-processing pipeline. var learningPipeline = reader.MakeNewEstimator() .Append(r => ( // Convert string label to a key. Label: r.Label.ToKey(), // Concatenate all the features together into one column 'Features'. Features: r.SepalLength.ConcatWith(r.SepalWidth, r.PetalLength, r.PetalWidth))); // Now, at the time of writing, there is no static pipeline for OVA (one-versus-all). So, let's // append the OVA learner to the dynamic pipeline. IEstimator <ITransformer> dynamicPipe = learningPipeline.AsDynamic; // Create a binary classification trainer. var binaryTrainer = new AveragedPerceptronTrainer(env, "Label", "Features"); // Append the OVA learner to the pipeline. dynamicPipe = dynamicPipe.Append(new Ova(env, binaryTrainer)); // At this point, we have a choice. We could continue working with the dynamically-typed pipeline, and // ultimately call dynamicPipe.Fit(data.AsDynamic) to get the model, or we could go back into the static world. // Here's how we go back to the static pipeline: var staticFinalPipe = dynamicPipe.AssertStatic(env, // Declare the shape of the input. As you can see, it's identical to the shape of the reader: // four float features and a string label. c => ( SepalLength: c.R4.Scalar, SepalWidth: c.R4.Scalar, PetalLength: c.R4.Scalar, PetalWidth: c.R4.Scalar, Label: c.Text.Scalar), // Declare the shape of the output (or a relevant subset of it). // In our case, we care only about the predicted label column (a key type), and scores (vector of floats). c => ( Score: c.R4.Vector, // Predicted label is a key backed by uint, with text values (since original labels are text). PredictedLabel: c.KeyU4.TextValues.Scalar)) // Convert the predicted label from key back to the original string value. .Append(r => r.PredictedLabel.ToValue()); // Train the model in a statically typed way. var model = staticFinalPipe.Fit(data); // And here is how we could've stayed in the dynamic pipeline and train that way. dynamicPipe = dynamicPipe.Append(new KeyToValueEstimator(env, "PredictedLabel")); var dynamicModel = dynamicPipe.Fit(data.AsDynamic); // Now 'dynamicModel', and 'model.AsDynamic' are equivalent. var rs = model.Transform(data).GetColumn(x => x).ToArray(); }