예제 #1
0
 /// <summary>
 /// Apply this transform model to the given input data.
 /// </summary>
 public IDataView Apply(IHostEnvironment env, IDataView input)
 {
     Contracts.CheckValue(env, nameof(env));
     env.CheckValue(input, nameof(input));
     return(ApplyTransformUtils.ApplyAllTransformsToData(env, _chain, input));
 }
예제 #2
0
        void CrossValidation()
        {
            var dataset = TestDatasets.Sentiment;

            int numFolds = 5;

            using (var env = new LocalEnvironment(seed: 1, conc: 1))
            {
                // Pipeline.
                var loader = TextLoader.ReadFile(env, MakeSentimentTextLoaderArgs(), new MultiFileSource(GetDataPath(dataset.trainFilename)));

                var       text  = TextFeaturizingEstimator.Create(env, MakeSentimentTextTransformArgs(false), loader);
                IDataView trans = new GenerateNumberTransform(env, text, "StratificationColumn");
                // Train.
                var trainer = new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments
                {
                    NumThreads           = 1,
                    ConvergenceTolerance = 1f
                });

                var metrics = new List <BinaryClassificationMetrics>();
                for (int fold = 0; fold < numFolds; fold++)
                {
                    IDataView trainPipe = new RangeFilter(env, new RangeFilter.Arguments()
                    {
                        Column     = "StratificationColumn",
                        Min        = (Double)fold / numFolds,
                        Max        = (Double)(fold + 1) / numFolds,
                        Complement = true
                    }, trans);
                    trainPipe = new OpaqueDataView(trainPipe);
                    var trainData = new RoleMappedData(trainPipe, label: "Label", feature: "Features");
                    // Auto-normalization.
                    NormalizeTransform.CreateIfNeeded(env, ref trainData, trainer);
                    var preCachedData = trainData;
                    // Auto-caching.
                    if (trainer.Info.WantCaching)
                    {
                        var prefetch  = trainData.Schema.GetColumnRoles().Select(kc => kc.Value.Index).ToArray();
                        var cacheView = new CacheDataView(env, trainData.Data, prefetch);
                        // Because the prefetching worked, we know that these are valid columns.
                        trainData = new RoleMappedData(cacheView, trainData.Schema.GetColumnRoleNames());
                    }

                    var       predictor = trainer.Train(new Runtime.TrainContext(trainData));
                    IDataView testPipe  = new RangeFilter(env, new RangeFilter.Arguments()
                    {
                        Column     = "StratificationColumn",
                        Min        = (Double)fold / numFolds,
                        Max        = (Double)(fold + 1) / numFolds,
                        Complement = false
                    }, trans);
                    testPipe = new OpaqueDataView(testPipe);
                    var pipe = ApplyTransformUtils.ApplyAllTransformsToData(env, preCachedData.Data, testPipe, trainPipe);

                    var testRoles = new RoleMappedData(pipe, trainData.Schema.GetColumnRoleNames());

                    IDataScorerTransform scorer = ScoreUtils.GetScorer(predictor, testRoles, env, testRoles.Schema);

                    BinaryClassifierMamlEvaluator eval = new BinaryClassifierMamlEvaluator(env, new BinaryClassifierMamlEvaluator.Arguments()
                    {
                    });
                    var dataEval    = new RoleMappedData(scorer, testRoles.Schema.GetColumnRoleNames(), opt: true);
                    var dict        = eval.Evaluate(dataEval);
                    var foldMetrics = BinaryClassificationMetrics.FromMetrics(env, dict["OverallMetrics"], dict["ConfusionMatrix"]);
                    metrics.Add(foldMetrics.Single());
                }
            }
        }
        public static IDataTransform Create(IHostEnvironment env, Arguments args, IDataView input)
        {
            Contracts.CheckValue(env, nameof(env));
            var host = env.Register("Tree Featurizer Transform");

            host.CheckValue(args, nameof(args));
            host.CheckValue(input, nameof(input));
            host.CheckUserArg(!string.IsNullOrWhiteSpace(args.TrainedModelFile) || args.Trainer != null, nameof(args.TrainedModelFile),
                              "Please specify either a trainer or an input model file.");
            host.CheckUserArg(!string.IsNullOrEmpty(args.FeatureColumn), nameof(args.FeatureColumn), "Transform needs an input features column");

            IDataTransform xf;

            using (var ch = host.Start("Create Tree Ensemble Scorer"))
            {
                var scorerArgs = new TreeEnsembleFeaturizerBindableMapper.Arguments()
                {
                    Suffix = args.Suffix
                };
                if (!string.IsNullOrWhiteSpace(args.TrainedModelFile))
                {
                    if (args.Trainer != null)
                    {
                        ch.Warning("Both an input model and a trainer were specified. Using the model file.");
                    }

                    ch.Trace("Loading model");
                    IPredictor predictor;
                    using (Stream strm = new FileStream(args.TrainedModelFile, FileMode.Open, FileAccess.Read))
                        using (var rep = RepositoryReader.Open(strm, ch))
                            ModelLoadContext.LoadModel <IPredictor, SignatureLoadModel>(host, out predictor, rep, ModelFileUtils.DirPredictor);

                    ch.Trace("Creating scorer");
                    var data = TrainAndScoreTransformer.CreateDataFromArgs(ch, input, args);

                    // Make sure that the given predictor has the correct number of input features.
                    if (predictor is CalibratedPredictorBase)
                    {
                        predictor = ((CalibratedPredictorBase)predictor).SubPredictor;
                    }
                    // Predictor should be a TreeEnsembleModelParameters, which implements IValueMapper, so this should
                    // be non-null.
                    var vm = predictor as IValueMapper;
                    ch.CheckUserArg(vm != null, nameof(args.TrainedModelFile), "Predictor in model file does not have compatible type");
                    if (vm.InputType.VectorSize != data.Schema.Feature.Type.VectorSize)
                    {
                        throw ch.ExceptUserArg(nameof(args.TrainedModelFile),
                                               "Predictor in model file expects {0} features, but data has {1} features",
                                               vm.InputType.VectorSize, data.Schema.Feature.Type.VectorSize);
                    }

                    var bindable = new TreeEnsembleFeaturizerBindableMapper(env, scorerArgs, predictor);
                    var bound    = bindable.Bind(env, data.Schema);
                    xf = new GenericScorer(env, scorerArgs, input, bound, data.Schema);
                }
                else
                {
                    ch.AssertValue(args.Trainer);

                    ch.Trace("Creating TrainAndScoreTransform");

                    var trainScoreArgs = new TrainAndScoreTransformer.Arguments();
                    args.CopyTo(trainScoreArgs);
                    trainScoreArgs.Trainer = args.Trainer;

                    trainScoreArgs.Scorer = ComponentFactoryUtils.CreateFromFunction <IDataView, ISchemaBoundMapper, RoleMappedSchema, IDataScorerTransform>(
                        (e, data, mapper, trainSchema) => Create(e, scorerArgs, data, mapper, trainSchema));

                    var mapperFactory = ComponentFactoryUtils.CreateFromFunction <IPredictor, ISchemaBindableMapper>(
                        (e, predictor) => new TreeEnsembleFeaturizerBindableMapper(e, scorerArgs, predictor));

                    var labelInput = AppendLabelTransform(host, ch, input, trainScoreArgs.LabelColumn, args.LabelPermutationSeed);
                    var scoreXf    = TrainAndScoreTransformer.Create(host, trainScoreArgs, labelInput, mapperFactory);

                    if (input == labelInput)
                    {
                        return(scoreXf);
                    }
                    return((IDataTransform)ApplyTransformUtils.ApplyAllTransformsToData(host, scoreXf, input, labelInput));
                }
            }
            return(xf);
        }
예제 #4
0
 public IDataView Transform(IDataView input) => ApplyTransformUtils.ApplyAllTransformsToData(_env, _xf, input);