public static NeuralNetwork<Matrix> Create(IDataSet<Matrix, Vector> dataSet) { var count = 5; var a = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) a[i] = new MatrixConvolutor(28, 28, 24, 24, new Tanh()); var b = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) b[i] = new MatrixSubsampler(24, 24, 12, 12, new Tanh()); var c = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) c[i] = new MatrixConvolutor(12, 12, 8, 8, new Tanh()); var d = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) d[i] = new MatrixSubsampler(8, 8, 4, 4, new Tanh()); var splitter = new Splitter<Matrix, Matrix>(a); var applicator1 = new Applicator<Matrix, Matrix>(b); var applicator2 = new Applicator<Matrix, Matrix>(c); var merger = new MatrixMerger<Matrix>(d); var classif = new FullyConnectedLayer(16 * count, 10, new Tanh()); var comp = CompositeLayer<Vector, Vector[], Vector>.Compose(splitter, applicator1, applicator2, merger, classif); return new NeuralNetwork<Matrix>(comp); }
public ApplicatorViewModel(Applicator applicator) { Applicator = applicator; IsBack = true; CreateTankCommand = new Command(CreateApplicatorTank); DeleteTankCommand = new Command(DeleteApplicatorTank); SaveTankCommand = new Command(SaveApplicatorTank); BackCommand = new Command(Back); }
public Trap(string creator, Frame fr, Applicator app, Gear g, Trigger tr) { itemName = "Trap"; frame = fr; applicator = app; gear = g; trigger = tr; setInventoryTextureName("Trap"); creatorId = creator; }
public Turret(string creator, Frame fr, Applicator app, Gear g, EnergySource es) { itemName = "Turret"; itemStackType = ItemStackType.Turret; frame = fr; applicator = app; gear = g; energySource = es; setInventoryTextureName("Turret"); //"Units/Turrets/TurretPlaceholder"); creatorId = creator; }
public ObservableCollection <ApplicatorTank> GetApplicatorTanks(Applicator applicator) { if (applicator == null) { return(null); } else { using (AppDbContext db = App.GetContext()) { var applicatorTanksDB = db.ApplicatorTanks.Where(at => at.ApplicatorId == applicator.ApplicatorId); return(new ObservableCollection <ApplicatorTank>(applicatorTanksDB.ToList())); } } }
public Trap(string itemData, string delim) : base(itemData, delim) { string[] split = itemData.Split(delim.ToCharArray()); int curr = numSplit; ItemCode frameCode = (ItemCode)int.Parse(split[curr++]); if (frameCode != ItemCode.None) { frame = (Frame)Item.deserializeItem(frameCode, split[curr++], otherDelimiter); } applicator = (Applicator)Item.deserializeItem((ItemCode)int.Parse(split[curr++]), split[curr++], otherDelimiter); gear = (Gear)Item.deserializeItem((ItemCode)int.Parse(split[curr++]), split[curr++], otherDelimiter); trigger = (Trigger)Item.deserializeItem((ItemCode)int.Parse(split[curr++]), split[curr++], otherDelimiter); if (curr < split.Length) { creatorId = split[curr++]; } }
public static NeuralNetwork<Matrix> CreateNorb(IDataSet<Matrix, Vector> dataSet) { var count = 12; var branch = 5; var a = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) a[i] = new MatrixConvolutor(96, 96, 92, 92, new Tanh()); var b = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) b[i] = new MatrixSubsampler(92, 92, 46, 46, new Tanh()); var c = new ISingleLayer<Matrix, Matrix>[count]; for (var i = 0; i < count; ++i) c[i] = new MatrixSubsampler(46, 46, 23, 23, new Tanh()); var splitter = new Splitter<Matrix, Matrix>(a); var applicator1 = new Applicator<Matrix, Matrix>(b); var merger = new MatrixMerger<Matrix>(c); var classif = new FullyConnectedLayer(23 * 23 * count, 5, new Tanh()); var comp = CompositeLayer<Vector, Vector[], Vector>.Compose(splitter, applicator1, merger, classif ); return new NeuralNetwork<Matrix>(comp); }
public TennisRule(string category, Applicator applier) : base(category) { apllicator = applier; }
public static float[,] AddHeat(this float[,] array, Vector2Int position, Heater function, Applicator applicator) { float[] values = new float[Mathf.Max(array.GetLength(0) - position.x, position.x) + Mathf.Max(array.GetLength(1) - position.y, position.y) + 1]; for (int i = 0; i < values.Length; i++) { values[i] = function(i); } for (int x = 0; x < array.GetLength(0); x++) { for (int y = 0; y < array.GetLength(1); y++) { int distance = Mathf.Abs(position.x - x) + Mathf.Abs(position.y - y); array[x, y] = applicator(array[x, y], values[distance]); } } return(array); }
public CurveMenuRule(string category, Applicator applier) : base(category) { apllicator = applier; }