private void test_button(object sender, EventArgs e) { string algorithm = comboBox1.Text; if (ac == null) { List <Itemset> eclatlitems = new List <Itemset>(); try { AllKeyWords = readFromFile(keyword_txt.Text); } catch (FileNotFoundException) { MessageBox.Show("Keywords error!"); } try { eclatlitems = load_model("AR.model"); } catch (FileNotFoundException) { MessageBox.Show("AR.model dont exist!"); } ac = new AR(eclatlitems, AllKeyWords); } ac.Classification_Test(testmessages, algorithm); write_mat(ac.testdocRule, ac.testlabels, "test"); ///*******************************************************************/ //ac.Classification_Test(test_docword, algorithm); ///*******************************************************************/ List <string> result = readFromFile("RESULTES_" + algorithm); double accuracy; int TPos = 0; int TNeg = 0; int FPos = 0; int FNeg = 0; for (int i = 0; i < result.Count; i++) { if (result[i] == "True") { if (testlabel[i] == 1) { TPos++; } else { FPos++; } } else { if (testlabel[i] == 0) { TNeg++; } else { FNeg++; } } } accuracy = (double)(TPos + TNeg) / result.Count; double percision = (double)TPos / (TPos + FPos); double recall = (double)TPos / (TPos + FNeg); string[] row = { accuracy.ToString("0.0000"), TPos.ToString(), FPos.ToString(), TNeg.ToString(), FNeg.ToString(), percision.ToString("0.0000"), recall.ToString("0.0000") }; dataGridView1.Rows.Add(row); }