public double Evaluate(IChromosome chromosome) { MyProblemChromosome mpc = chromosome as MyProblemChromosome; HashSet <int> checkDupicate = new HashSet <int>(); int count = 0; for (int i = 0; i < mpc.Length; i++) { int index = (int)mpc.GetGene(i).Value; int id = CandiatesForEachCentroid[i][index]; if (checkDupicate.Add(id)) { count++; } } mpc.Significance = count; if (count <= CentroidPoints.Count() * 0.94) { return(double.MinValue); } double fitness = 0; for (int i = 0; i < mpc.Length; i++) { var o = CentroidPoints[i]; int index = (int)mpc.GetGene(i).Value; var d = BusStopPoints[CandiatesForEachCentroid[i][index]]; fitness += (o.X - d.X) * (o.X - d.X) + (o.Y - d.Y) * (o.Y - d.Y); } return(-fitness); }
public static void CorretionCentroid() { //中心点数据 Stopwatch sw = new Stopwatch(); sw.Start(); List <Coordinate> centroidPoints = new List <Coordinate>(80); StreamReader sr = new StreamReader(@"D:\MagicSong\OneDrive\2017研究生毕业设计\数据\项目用数据\中心点80.txt"); sr.ReadLine();//读取标题行 while (!sr.EndOfStream) { string[] line = sr.ReadLine().Split(','); centroidPoints.Add(new Coordinate(double.Parse(line[1]), double.Parse(line[2]))); } sr.Close(); //Bus数据,并且构造KD树 KdTree myKdtree = new KdTree(2); IFeatureSet busFS = FeatureSet.Open(@"D:\MagicSong\OneDrive\2017研究生毕业设计\数据\项目用数据\BusStopGauss.shp"); List <Coordinate> busStopPoints = new List <Coordinate>(busFS.NumRows()); foreach (var item in busFS.Features) { var c = item.Coordinates[0]; busStopPoints.Add(c); myKdtree.Insert(new double[] { c.X, c.Y }, item); } Console.WriteLine("数据读取完毕,开始构造遗传算法"); IFeatureSet newCentroid = new FeatureSet(FeatureType.Point); newCentroid.Name = "优化过的中心点"; newCentroid.Projection = ProjectionInfo.FromEpsgCode(GAUSS_EPSG); newCentroid.DataTable.Columns.Add("name", typeof(string)); //遗传算法,构造适应性函数 MyProblemChromosome.CandiateNumber = 5; List <int[]> candinatesForEachControid = new List <int[]>(centroidPoints.Count); foreach (var item in centroidPoints) { object[] nearest = myKdtree.Nearest(new double[] { item.X, item.Y }, MyProblemChromosome.CandiateNumber); candinatesForEachControid.Add(nearest.Select((o) => { var f = o as IFeature; return(f.Fid); }).ToArray()); } MyProblemFitness fitness = new MyProblemFitness(centroidPoints, busStopPoints, candinatesForEachControid); MyProblemChromosome mpc = new MyProblemChromosome(centroidPoints.Count); //这边可以并行 MyProblemChromosome globalBest = null; Console.WriteLine("遗传算法构造已经完成!"); sw.Stop(); Console.WriteLine("一共用时:{0}s", sw.Elapsed.TotalSeconds); int GACount = 8; Parallel.For(0, GACount, new Action <int>((index) => { var selection = new EliteSelection(); var crossover = new TwoPointCrossover(); var mutation = new ReverseSequenceMutation(); var population = new Population(1000, 1200, mpc); var ga = new GeneticAlgorithm(population, fitness, selection, crossover, mutation); ga.Termination = new GenerationNumberTermination(1000); Stopwatch sw1 = new Stopwatch(); sw1.Start(); Console.WriteLine("遗传算法任务{0}正在运行.......", index); ga.Start(); var best = ga.BestChromosome as MyProblemChromosome; if (globalBest == null || globalBest.Fitness < best.Fitness) { globalBest = best; } sw1.Stop(); Console.WriteLine("第{0}次遗传算法已经完成,耗费时间为:{1}s,最终的fitness为:{2},有效个数为:{3}", index, sw1.Elapsed.TotalSeconds, best.Fitness, best.Significance); })); Console.WriteLine("Final Choose!"); Console.WriteLine("最终的fitness为:{0},有效个数为:{1}", globalBest.Fitness, globalBest.Significance); for (int i = 0; i < globalBest.Length; i++) { int index = candinatesForEachControid[i][(int)globalBest.GetGene(i).Value]; Coordinate c = busStopPoints[index]; var f = newCentroid.AddFeature(new Point(c)); f.DataRow.BeginEdit(); f.DataRow["name"] = busFS.GetFeature(index).DataRow["name"]; f.DataRow.EndEdit(); } newCentroid.SaveAs("newCentroid.shp", true); Console.ReadKey(); }