public static void Main(string[] args) { //Object to Hold Task Parameters TaskDimensions task = new TaskDimensions(); //Dictionary that contains a list of top ten jobs compared with other jobs for each user Dictionary <int, List <TopJobData> > finalList = new Dictionary <int, List <TopJobData> >(); //User number to start proccessing int user_number = 1; //Load File System Service IFileSystemSvc svc = new FileSystemSvcImpl(); //Method call to get the number of jobs and users from the file Y svc.detectSizeOfJobsColumns(task, Directory.GetCurrentDirectory() + "/files/Y1.txt"); //Method call to get the number of features from the file X, and allocating the X matrix double[,] X = svc.getNumberOfFeaturesX(Directory.GetCurrentDirectory() + "/files/X1.txt", task); svc.readFeaturesX(X, Directory.GetCurrentDirectory() + "/files/X1.txt", task); //Method call to get the jobs names String[] job_list = svc.readJobNames(Directory.GetCurrentDirectory() + "/files/job_names1.txt", task); //method that return the users profile UserProfile[] users_profile = svc.readUserProfile(Directory.GetCurrentDirectory() + "/files/user_table.txt", task); //Creating a variable to write in a File the job recommendations and comparisons //Load File Writer StreamWriter writeTextResult = svc.getResultStreamWriter(); StreamWriter writeTextAverages = svc.getAverageStreamWriter(); double total_avg_system = 0; double total_user_inaccuracy = 0; while (user_number <= task.num_users_init) { // Movie rating file for a user double[,] my_ratings = new double[task.num_jobs_init, 1]; //Now we read R and Y from theirs files (-1 because I will remove the chosen user from the matrixes) double[,] Y = svc.readTrainingY(Directory.GetCurrentDirectory() + "/files/Y1.txt", task, my_ratings, user_number); double[,] R = svc.readTrainingR(Directory.GetCurrentDirectory() + "/files/R1.txt", task, user_number); //Creating a MatLab reference to execute the recommended job script IMatlabSvc matSvc = new MatlabSvcImpl(); object[] res = matSvc.executeFilter(task, job_list, Directory.GetCurrentDirectory() + "/files", my_ratings, Y, R, X, user_number); //Each time creates a to be used to write the recommended jobs in a file List <TopJobData> mylist = svc.writeValuesToFile(writeTextResult, res, job_list, user_number); //Calculate Averages for Jobs for a User DataResult avgs = new DataResult(mylist, 10, users_profile[user_number - 1]); avgs.AverageForEachJob(); svc.writeAveragesToFile(avgs, writeTextAverages, users_profile[user_number - 1]); total_avg_system += avgs.Percentage_total_avg; total_user_inaccuracy += avgs.Self_inaccuracy; //adding the list at the Dictionary for each user user_number++; } total_avg_system /= task.num_users_init; writeTextAverages.WriteLine("AVGS TOTAL\t" + total_avg_system); total_user_inaccuracy /= task.num_users_init; writeTextAverages.WriteLine("COMMUNITY INACCURACY\t" + total_user_inaccuracy); writeTextResult.Close(); writeTextAverages.Close(); //creating a instance of DataResult to be used to write the averages in a file Console.WriteLine("DONE"); //Wait until fisnih Console.ReadLine(); }
public static void Main(string[] args) { //Object to Hold Task Parameters TaskDimensions task = new TaskDimensions(); //User number to start proccessing int user_number = 1; //Load File System Service IFileSystemSvc svc = new FileSystemSvcImpl(); //Method call to get the number of jobs and users from the file Y svc.detectSizeOfJobsColumns(task, Directory.GetCurrentDirectory() + "/files/Y.txt"); //Method call to get the number of features from the file X, and allocating the X matrix double[,] X = svc.getNumberOfFeaturesX(Directory.GetCurrentDirectory() + "/files/X.txt", task); svc.readFeaturesX(X, Directory.GetCurrentDirectory() + "/files/X.txt", task); //Method call to get the jobs names String[] job_list = svc.readJobNames(Directory.GetCurrentDirectory() + "/files/expressions.txt", task); //method that return the users profile UserProfile[] users_profile = svc.readUserProfile(Directory.GetCurrentDirectory() + "/files/user_table.txt", task); //Creating a variable to write in a File the job recommendations and comparisons //Load File Writer StreamWriter writeTextResult = svc.getResultStreamWriter(); StreamWriter writeTextAverages = svc.getAverageStreamWriter(); StreamWriter writeText = svc.getIdandAvgStreamWriter(); StreamWriter writeTextDiff = svc.getDifficultyStreamWriter(); int numUnderEstimated = 0, numOverEstimated = 0; double[] users_calculated_raitings = new double[task.num_users_init]; double total_rating_avg_system = 0; double total_similarity_avg_system = 0; double total_inaccuracy_system = 0; while (user_number <= task.num_users_init) { // Movie rating file for a user double[,] my_ratings = new double[task.num_jobs_init, 1]; //Now we read R and Y from theirs files (-1 because I will remove the chosen user from the matrixes) double[,] Y = svc.readTrainingY(Directory.GetCurrentDirectory() + "/files/Y.txt", task, my_ratings, user_number); double[,] R = svc.readTrainingR(Directory.GetCurrentDirectory() + "/files/R.txt", task, user_number); //Creating a MatLab reference to execute the recommended job script IMatlabSvc matSvc = new MatlabSvcImpl(); object[] res = matSvc.executeFilter(task, job_list, Directory.GetCurrentDirectory() + "/files", my_ratings, Y, R, X, user_number); //Each time creates a to be used to write the recommended jobs in a file List <TopJobData> mylist = svc.writeValuesToFile(writeTextResult, res, job_list, user_number, X); //Calculate Averages for Jobs for a User DataResult avgs = new DataResult(mylist, mylist.Count, users_profile[user_number - 1]); avgs.AverageForEachJob(); svc.writeAveragesToFile(avgs, writeTextAverages, users_profile[user_number - 1]); total_rating_avg_system += avgs.Rating_total_avg; total_similarity_avg_system += avgs.Percentage_total_avg; total_inaccuracy_system += avgs.Self_inaccuracy; //adding the list at the Dictionary for each user //ID and AVGs file writeText.WriteLine(users_profile[user_number - 1].UserID + "\t" + avgs.Rating_total_avg); //people who under and overestimated themselves if (avgs.Self_inaccuracy > 0) { numOverEstimated++; } else { numUnderEstimated++; } users_calculated_raitings[user_number - 1] = avgs.Rating_total_avg; //writing in the difficulty file svc.writeDifficultyToFile(writeTextDiff, avgs); user_number++; } total_rating_avg_system /= task.num_users_init; total_similarity_avg_system /= task.num_users_init; total_inaccuracy_system /= task.num_users_init; //writing some more global information svc.writeGlobalAveragesInformation(total_rating_avg_system, total_similarity_avg_system, total_inaccuracy_system, numUnderEstimated, numOverEstimated, task, writeTextAverages, users_profile, users_calculated_raitings); //closing the three files writeText.Close(); writeTextResult.Close(); writeTextAverages.Close(); writeTextDiff.Close(); //creating a instance of DataResult to be used to write the averages in a file Console.WriteLine("DONE"); //Wait until fisnih Console.ReadLine(); }
public static void Main(string[] args) { //JOBS LIST and X is working but the order is different JobSvcImpl j = new JobSvcImpl(); String[] job_list = j.selectExpressionNames(); //job_names double[] X = j.selectExpressionDifficulty(); //X double[,] new_X = new double[X.Length, 1]; for (int i = 0; i < X.Length; i++) { new_X[i, 0] = X[i]; } //User Profile (just the user ID, I still need the user self rating) RecruiteeSvcImpl r = new RecruiteeSvcImpl(); String[] recruitee_names = r.selectRecruiteeNames(); double[] recruitee_skill = r.selectRecruiteeSkills(); UserProfile[] users_profile = new UserProfile[recruitee_skill.Length]; for (int i = 0; i < recruitee_skill.Length; i++) { users_profile[i] = new UserProfile("", 0); users_profile[i].UserID = recruitee_names[i]; users_profile[i].UserRating = recruitee_skill[i]; } //new_Y IElasticSvc es = new ElasticSvcImpl(); double[,] Y = es.SelectRatings(job_list, users_profile); ///////// WRITING VARIABLES IN FILE //////////// FromWebToFile file = new FromWebToFile(); file.writeFiles(job_list, new_X, users_profile, Y); //Object to Hold Task Parameters TaskDimensions task = new TaskDimensions(); task.num_features = new_X.GetLength(1); //1 is the number of columns task.num_jobs_init = job_list.Length; task.num_users_init = recruitee_names.Length; //User number to start proccessing int user_number = 1; //Load File System Service IFileSystemSvc svc = new FileSystemSvcImpl(); //Creating a variable to write in a File the job recommendations and comparisons //Load File Writer StreamWriter writeTextResult = svc.getResultStreamWriter(); StreamWriter writeTextAverages = svc.getAverageStreamWriter(); StreamWriter writeText = svc.getIdandAvgStreamWriter(); StreamWriter writeTextDiff = svc.getDifficultyStreamWriter(); double[] users_calculated_raitings = new double[task.num_users_init]; double total_rating_avg_system = 0; double total_similarity_avg_system = 0; double total_inaccuracy_system = 0; while (user_number <= task.num_users_init) { double[,] my_ratings = new double[task.num_jobs_init, 1]; double[,] new_Y = new double[task.num_jobs_init, task.num_users_init - 1]; double[,] R = new double[task.num_jobs_init, task.num_users_init - 1]; for (int i = 0; i < job_list.Length; i++) { int k = 0; for (int n = 0; n < users_profile.Length; n++) { if (n != (user_number - 1)) { new_Y[i, k] = Y[i, n]; if (Y[i, n] != 0) { R[i, k] = 1; } else { R[i, k] = 0; } k++; } else { my_ratings[i, 0] = Y[i, n]; } } } //Creating a MatLab reference to execute the recommended job script IMatlabSvc matSvc = new MatlabSvcImpl(); object[] res = matSvc.executeFilter(task, job_list, Directory.GetCurrentDirectory() + "/files", my_ratings, new_Y, R, new_X, user_number); //Each time creates a to be used to write the recommended jobs in a file List <TopJobData> mylist = svc.writeValuesToFile(writeTextResult, res, job_list, user_number, new_X); //Calculate Averages for Jobs for a User DataResult avgs = new DataResult(mylist, mylist.Count, users_profile[user_number - 1]); avgs.AverageForEachJob(); svc.writeAveragesToFile(avgs, writeTextAverages, users_profile[user_number - 1]); total_rating_avg_system += avgs.Rating_total_avg; total_similarity_avg_system += avgs.Percentage_total_avg; total_inaccuracy_system += avgs.Self_inaccuracy; //adding the list at the Dictionary for each user //ID and AVGs file writeText.WriteLine(users_profile[user_number - 1].UserID + "\t" + avgs.Rating_total_avg); users_calculated_raitings[user_number - 1] = avgs.Rating_total_avg; //writing in the difficulty file svc.writeDifficultyToFile(writeTextDiff, avgs); //used to insert recommended jobs for a user in the database es.insertRecommenderJob(avgs); user_number++; } total_rating_avg_system /= task.num_users_init; total_similarity_avg_system /= task.num_users_init; total_inaccuracy_system /= task.num_users_init; //writing some more global information svc.writeGlobalAveragesInformation(total_rating_avg_system, total_similarity_avg_system, total_inaccuracy_system, task, writeTextAverages, users_profile, users_calculated_raitings); //closing the three files writeText.Close(); writeTextResult.Close(); writeTextAverages.Close(); writeTextDiff.Close(); /* * Used to insert rating for task performed by workers. (User interface need to be built) * * double[,] full_Y = svc.readFullY(Directory.GetCurrentDirectory() + "/files/Y.txt", task); * IElasticSvc e = new ElasticSvcImpl(); * e.InsertRatings(job_list, users_profile, full_Y); */ Console.WriteLine("DONE"); //Wait until fisnih Console.ReadLine(); }