コード例 #1
0
ファイル: MatrixStatics.cs プロジェクト: toroerp/numl
        /// <summary>Eigen Decomposition.</summary>
        /// <param name="A">Input Matrix.</param>
        /// <returns>Tuple(Eigen Values, Eigen Vectors)</returns>
        public static Tuple <Vector, Matrix> Evd(Matrix A)
        {
            Evd eigs = new Evd(A);

            eigs.Compute();
            return(new Tuple <Vector, Matrix>(eigs.Eigenvalues, eigs.Eigenvectors));
        }
コード例 #2
0
ファイル: EvdTests.cs プロジェクト: sethjuarez/numl
        public void CanFactorizeRandomSymmetricMatrix(int order, bool diagonal)
        {
            // create random matrix
            var rand = Matrix.Rand(order, 1.13);
            // create a symmetric positive definite matrix
            var A = rand.T * rand;

            if (diagonal)
            {
                var diag = A[0, 0];
                for (var i = 1; i < order; i++)
                    A[i, i] = diag;
            }

            var evd = new Evd(A);
            // compute eigenvalues/eigenvectors
            evd.Compute();
            var eigenvectors = evd.Eigenvectors;
            var eigenvalues = evd.Eigenvalues;

            foreach (var e in eigenvalues)
                Assert.False(double.IsNaN(e));

            Assert.Equal(order, eigenvectors.Rows);
            Assert.Equal(order, eigenvectors.Cols);
            Assert.Equal(order, eigenvalues.Length);

            // make sure that A = V*λ*VT
            var computed = eigenvectors * eigenvalues.Diag() * eigenvectors.T;
            Assert.True(A.Equals(computed, 1e-10));
        }
コード例 #3
0
ファイル: EvdTests.cs プロジェクト: nagarwl1/numl
        public void CanFactorizeRandomSymmetricMatrix(int order)
        {
            // create random matrix
            var rand = Matrix.Rand(order, 1.13);
            // create a symmetric positive definite matrix
            var A = rand.T * rand;
            var evd = new Evd(A);
            // compute eigenvalues/eigenvectors
            evd.compute();
            var eigenvectors = evd.Eigenvectors;
            var eigenvalues = evd.Eigenvalues;

            Assert.AreEqual(order, eigenvectors.Rows);
            Assert.AreEqual(order, eigenvectors.Cols);
            Assert.AreEqual(order, eigenvalues.Length);

            // make sure that A = V*λ*VT
            var computed = eigenvectors * eigenvalues.Diag() * eigenvectors.T;
            Assert.IsTrue(A.Equals(computed, 1e-10));
        }
コード例 #4
0
ファイル: MatrixStatics.cs プロジェクト: ChewyMoon/Cupcake
 /// <summary>Eigen Decomposition.</summary>
 /// <param name="A">Input Matrix.</param>
 /// <returns>Tuple(Eigen Values, Eigen Vectors)</returns>
 public static Tuple<Vector, Matrix> Evd(Matrix A)
 {
     var eigs = new Evd(A);
     eigs.compute();
     return new Tuple<Vector, Matrix>(eigs.Eigenvalues, eigs.Eigenvectors);
 }