コード例 #1
0
        /* ------------------------
           Constructor
         * ------------------------ */

        /** QR Decomposition, computed by Householder reflections.
        @param A    Rectangular matrix
        @return     Structure to access R and the Householder vectors and compute Q.
        */

        public QRDecomposition(CoreMatrix A)
        {
            // Initialize.
            QR = A.getArrayCopy();
            m = A.getRowDimension();
            n = A.getColumnDimension();
            Rdiag = new double[n];

            // Main loop.
            for (int k = 0; k < n; k++)
            {
                // Compute 2-norm of k-th column without under/overflow.
                double nrm = 0;
                for (int i = k; i < m; i++)
                {
                    nrm = Maths.hypot(nrm, QR[i, k]);
                }

                if (nrm != 0.0)
                {
                    // Form k-th Householder vector.
                    if (QR[k, k] < 0)
                    {
                        nrm = -nrm;
                    }
                    for (int i = k; i < m; i++)
                    {
                        QR[i, k] /= nrm;
                    }
                    QR[k, k] += 1.0;

                    // Apply transformation to remaining columns.
                    for (int j = k + 1; j < n; j++)
                    {
                        double s = 0.0;
                        for (int i = k; i < m; i++)
                        {
                            s += QR[i, k] * QR[i, j];
                        }
                        s = -s / QR[k, k];
                        for (int i = k; i < m; i++)
                        {
                            QR[i, j] += s * QR[i, k];
                        }
                    }
                }
                Rdiag[k] = -nrm;
            }
        }
コード例 #2
0
        /* ------------------------
           Constructor
         * ------------------------ */

        /** LU Decomposition
        @param  A   Rectangular matrix
        @return     Structure to access L, U and piv.
        */

        public LUDecomposition(CoreMatrix A)
        {

            // Use a "left-looking", dot-product, Crout/Doolittle algorithm.

            LU = A.getArrayCopy();
            m = A.getRowDimension();
            n = A.getColumnDimension();
            piv = new int[m];
            for (int i = 0; i < m; i++)
            {
                piv[i] = i;
            }
            pivsign = 1;
            double[] LUrowi = new double[m];
            double[] LUcolj = new double[m];

            // Outer loop.

            for (int j = 0; j < n; j++)
            {

                // Make a copy of the j-th column to localize references.

                for (int i = 0; i < m; i++)
                {
                    LUcolj[i] = LU[i, j];
                }

                // Apply previous transformations.

                for (int i = 0; i < m; i++)
                {
                    for (int h = 0; i < m; i++)
                        LUrowi[h] = LU[i, h];

                    // Most of the time is spent in the following dot product.

                    int kmax = Math.Min(i, j);
                    double s = 0.0;
                    for (int k = 0; k < kmax; k++)
                    {
                        s += LUrowi[k] * LUcolj[k];
                    }

                    LUrowi[j] = LUcolj[i] -= s;
                }

                // Find pivot and exchange if necessary.

                int p = j;
                for (int i = j + 1; i < m; i++)
                {
                    if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p]))
                    {
                        p = i;
                    }
                }
                if (p != j)
                {
                    for (int ki = 0; ki < n; ki++)
                    {
                        double t = LU[p, ki]; LU[p, ki] = LU[j, ki]; LU[j, ki] = t;
                    }
                    int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
                    pivsign = -pivsign;
                }

                // Compute multipliers.

                if (j < m & LU[j, j] != 0.0)
                {
                    for (int i = j + 1; i < m; i++)
                    {
                        LU[i, j] /= LU[j, j];
                    }
                }
            }
        }
コード例 #3
0
        /** Least squares solution of A*X = B
        @param B    A Matrix with as many rows as A and any number of columns.
        @return     X that minimizes the two norm of Q*R*X-B.
        @exception  IllegalArgumentException  Matrix row dimensions must agree.
        @exception  RuntimeException  Matrix is rank deficient.
        */

        public CoreMatrix solve(CoreMatrix B)
        {
            if (B.getRowDimension() != m)
            {
                throw new Exception("Matrix row dimensions must agree.");
            }
            if (!this.isFullRank())
            {
                throw new Exception("Matrix is rank deficient.");
            }

            // Copy right hand side
            int nx = B.getColumnDimension();
            double[,] X = B.getArrayCopy();

            // Compute Y = transpose(Q)*B
            for (int k = 0; k < n; k++)
            {
                for (int j = 0; j < nx; j++)
                {
                    double s = 0.0;
                    for (int i = k; i < m; i++)
                    {
                        s += QR[i, k] * X[i, j];
                    }
                    s = -s / QR[k, k];
                    for (int i = k; i < m; i++)
                    {
                        X[i, j] += s * QR[i, k];
                    }
                }
            }
            // Solve R*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k, j] /= Rdiag[k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i, j] -= X[k, j] * QR[i, k];
                    }
                }
            }
            return (new CoreMatrix(X, n, nx).getMatrix(0, n - 1, 0, nx - 1));
        }
コード例 #4
0
        /** Solve A*X = B
        @param  B   A Matrix with as many rows as A and any number of columns.
        @return     X so that L*U*X = B(piv,:)
        @exception  IllegalArgumentException Matrix row dimensions must agree.
        @exception  RuntimeException  Matrix is singular.
        */

        public CoreMatrix solve(CoreMatrix B)
        {
            if (B.getRowDimension() != m)
            {
                throw new Exception("Matrix row dimensions must agree.");
            }
            if (!this.isNonsingular())
            {
                throw new Exception("Matrix is singular.");
            }

            // Copy right hand side with pivoting
            int nx = B.getColumnDimension();
            CoreMatrix Xmat = B.getMatrix(piv, 0, nx - 1);
            double[,] X = Xmat.getArray();

            // Solve L*Y = B(piv,:)
            for (int k = 0; k < n; k++)
            {
                for (int i = k + 1; i < n; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i, j] -= X[k, j] * LU[i, k];
                    }
                }
            }
            // Solve U*X = Y;
            for (int k = n - 1; k >= 0; k--)
            {
                for (int j = 0; j < nx; j++)
                {
                    X[k, j] /= LU[k, k];
                }
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < nx; j++)
                    {
                        X[i, j] -= X[k, j] * LU[i, k];
                    }
                }
            }
            return Xmat;
        }