コード例 #1
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        public static void LoadDBpediaRedirect()
        {
            lock (dbpediaRedirectLocker)
            {
                if (redirects == null)
                {
                    var dic    = new Dictionary <string, string>();
                    var dic2   = new Dictionary <string, string>();
                    var dic3   = new Dictionary <string, string>();
                    var reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.dbpedia_redirect_file));
                    var line   = "";
                    System.Text.RegularExpressions.Regex regex       = new System.Text.RegularExpressions.Regex(@"_+");
                    System.Text.RegularExpressions.Regex deleteBrace = new System.Text.RegularExpressions.Regex(@"\(\w+\)");

                    while ((line = reader.ReadLine()) != null)
                    {
                        line = line.ToLower();
                        var array  = line.Split('\t');
                        var source = deleteBrace.Replace(array[0], "");
                        source = regex.Replace(source, " ").Trim();
                        var des = deleteBrace.Replace(array[1], "");
                        des         = regex.Replace(des, " ").Trim();
                        dic[source] = des;
                        var source2 = deleteSpace.Replace(source, "");
                        var des2    = deleteSpace.Replace(des, "");
                        dic2[source2] = des2;
                        dic3[source2] = des;
                    }
                    reader.Close();
                    redirects                       = dic;
                    redirectsWithoutSpace           = dic2;
                    redirectsWithoutSpace2WithSpace = dic3;
                }
            }
        }
コード例 #2
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        /*Read Dictionary from  file
         */
        private static void LoadDictionary()
        {
            lock (dicLocker)
            {
                if (dicTypeMap == null)
                {
                    FileReader    reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.dic_file));
                    String        line;
                    List <String> list;
                    dics = new Dictionary <string, List <string> >();
                    var dic = new Dictionary <String, int>();
                    HashSet <String> set = new HashSet <String>();

                    while ((line = reader.ReadLine()) != null)
                    {
                        list = line.Split('\t').ToList();
                        List <String> strs = list.GetRange(1, list.Count - 1);
                        dics[list[0]] = strs;
                        strs.ForEach(x => set.Add(x));
                    }
                    foreach (var type in set)
                    {
                        dic[type] = dic.Count;
                    }
                    reader.Close();
                    dicTypeMap = dic;
                }
            }
        }
コード例 #3
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadStemMap()
        {
            lock (stemmerLocker)
            {
                if (stemWordDic == null)
                {
                    var        dic    = new Dictionary <string, string>();
                    FileReader reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.stem_map));
                    //FileReader reader = new LargeFileReader(@"D:\Codes\Project\EntityTyping\Fine-ner\input\tables\stem-word-table.txt");
                    string   line;
                    string[] array;

                    while ((line = reader.ReadLine()) != null)
                    {
                        array = line.Split('\t');
                        try
                        {
                            dic[array[0]] = array[1];
                        }
                        catch (Exception)
                        {
                            continue;
                        }
                    }
                    reader.Close();
                    stemWordDic = dic;
                }
            }
        }
コード例 #4
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadWordClusterID()
        {
            lock (wordIDLocker)
            {
                if (wordIdDic == null)
                {
                    var           dic    = new Dictionary <string, int>();
                    FileReader    reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.word_id_file));
                    string        line;
                    string[]      array;
                    HashSet <int> ids = new HashSet <int>();

                    while ((line = reader.ReadLine()) != null)
                    {
                        array = line.Split('\t');
                        try
                        {
                            var id = int.Parse(array[1]);
                            ids.Add(id);
                            dic[array[0]] = id;
                        }
                        catch (Exception)
                        {
                            continue;
                        }
                    }
                    reader.Close();
                    wordClusterSize = ids.Count;
                    wordIdDic       = dic;
                }
            }
        }
コード例 #5
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadWordTable()
        {
            lock (wordTableLocker)
            {
                if (word2index == null)
                {
                    FileReader reader = null;
                    reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.word_table_file));
                    String line;
                    var    dic = new Dictionary <string, int>();

                    while ((line = reader.ReadLine()) != null)
                    {
                        var array = line.Split('\t');
                        try
                        {
                            var count = dic.Count;
                            dic[array[0]] = count;
                        }
                        catch (Exception)
                        {
                            continue;
                        }
                    }
                    reader.Close();
                    word2index = dic;
                }
            }
        }
コード例 #6
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        /// <summary>
        /// Mention words are seperated by "_"
        /// </summary>
        private static void LoadMentionClusterID()
        {
            lock (mentionIDLocker)
            {
                if (mentionIdDic == null)
                {
                    var           dic    = new Dictionary <string, int>();
                    FileReader    reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.mention_id_file));
                    string        line;
                    string[]      array;
                    HashSet <int> ids = new HashSet <int>();
                    System.Text.RegularExpressions.Regex regex = new System.Text.RegularExpressions.Regex(@"_+");

                    while ((line = reader.ReadLine()) != null)
                    {
                        array = line.Split('\t');
                        try
                        {
                            var id = int.Parse(array[1]);
                            ids.Add(id);
                            array[0]      = regex.Replace(array[0], " ");
                            dic[array[0]] = id;
                        }
                        catch (Exception)
                        {
                            continue;
                        }
                    }
                    reader.Close();
                    mentionClusterSize = ids.Count;
                    mentionIdDic       = dic;
                }
            }
        }
コード例 #7
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadPosTagTable()
        {
            lock (posTagLocker)
            {
                if (posTag2index == null)
                {
                    var dic = new Dictionary <string, int>();

                    FileReader reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.posTag_table_file));
                    String     line;

                    while ((line = reader.ReadLine()) != null)
                    {
                        try
                        {
                            var count = dic.Count;
                            dic[line] = count;
                        }
                        catch (Exception)
                        {
                            continue;
                        }
                    }
                    reader.Close();
                    posTag2index = dic;
                }
            }
        }
コード例 #8
0
ファイル: Tokenizer.cs プロジェクト: v-mipeng/EntityTyping
        private void Initial(string modelDir = null)
        {
            var props = new Properties();

            props.put("annotators", "tokenize");
            props.setProperty("ner.useSUTime", "false");
            var dir = Directory.GetCurrentDirectory();

            Directory.SetCurrentDirectory((string)GlobalParameter.Get(DefaultParameter.Field.stanford_model_dir));
            pipeline = new StanfordCoreNLP(props);
            Directory.SetCurrentDirectory(dir);
        }
コード例 #9
0
        void Initial(string modelDir = null)
        {
            var props = new Properties();

            props.put("annotators", "tokenize,ssplit");
            props.put("tokenizer.whitespace", "true");

            var dir = Directory.GetCurrentDirectory();

            Directory.SetCurrentDirectory(modelDir ?? (string)GlobalParameter.Get(DefaultParameter.Field.stanford_model_dir));
            pipeline = new StanfordCoreNLP(props);
            Directory.SetCurrentDirectory(dir);
        }
コード例 #10
0
        void Initial()
        {
            var props = new Properties();

            props.put("annotators", "tokenize,ssplit, pos,depparse");
            props.setProperty("tokenizer.whitespace", "true");
            props.setProperty("ssplit.isOneSentence", "true");
            var dir = Directory.GetCurrentDirectory();

            Directory.SetCurrentDirectory((string)GlobalParameter.Get(DefaultParameter.Field.stanford_model_dir));
            pipeline = new StanfordCoreNLP(props);
            Directory.SetCurrentDirectory(dir);
        }
コード例 #11
0
ファイル: Pipeline.cs プロジェクト: v-mipeng/EntityTyping
        /*********************Interactive Interface***********************/

        /// <summary>
        ///    /* Methods:
        ///      /ewt                 : extract word table
        ///      /ef         : extract feature
        ///         -b               :    extract feature for bayes model (default)
        ///         -s                :    extract feature for svm model
        ///         -all             :    extract all data feature (default)
        ///         -train         :    extract train data feature
        ///         -dev           :    extract develop data feature
        ///         -test           :    extract test data feature
        ///     /out
        ///        -dt     : output dictionary type and value
        ///     /tr
        ///        -b      : train extracted feature with Bayes Model (default)
        ///     /ts
        ///       -b      : test extracted features with Bayes Model (default)
        /// </summary>
        public void Execute()
        {
            string operation = null;    // command
            var    options   = new HashSet <string>();
            var    method    = (string)GlobalParameter.Get(DefaultParameter.Field.method);
            var    array     = Regex.Split(method, @"\s+");

            for (var i = 0; i < array.Length; i++)
            {
                if (array[i].StartsWith("/"))
                {
                    //execute one operaton
                    if (operation != null)
                    {
                        Invoke(operation, options);
                    }
                    operation = array[i].Substring(1, array[i].Length - 1);
                    // Encounter invalid operation
                    if (!IsValidOperation(operation))
                    {
                        Console.WriteLine(operation + " is not a valid operation!");
                        // skip invalid operation
                        i++;
                        while (i < array.Length && !array[i].StartsWith("/"))
                        {
                            i++;
                        }
                        i--;
                    }
                }
                else if (array[i].StartsWith("-"))
                {
                    var option = array[i].Substring(1, array[i].Length - 1);
                    // Check if option is valid
                    if (IsValidOption(operation, option))
                    {
                        options.Add(option);
                    }
                    else
                    {
                        Console.Error.WriteLine(option + " is invalid for operation:" + operation);
                    }
                }
            }
            // Invoke the last operation
            if (operation != null)
            {
                Invoke(operation, options);
            }
        }
コード例 #12
0
ファイル: Pipeline.cs プロジェクト: v-mipeng/EntityTyping
        /* Train file format:
         *      Mention     Type    Context
         * Extract word table and word shape table from train data
         * Every word is converted to lowercase and stemmed
         * /************************************************************************/
        public void ExtractWordTable()
        {
            FileReader reader          = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.train_data_file));
            FileWriter writer          = new LargeFileWriter((string)GlobalParameter.Get(DefaultParameter.Field.word_table_file), FileMode.Create);
            FileWriter wordShapeWriter = new LargeFileWriter((string)GlobalParameter.Get(DefaultParameter.Field.word_shape_table_file), FileMode.Create);
            //FileWriter wordShapeWriter = new LargeFileWriter("../../../Fine-ner/input/shape-table-file.txt", FileMode.Create);

            string line           = null;
            var    wordTable      = new HashSet <string>();
            var    wordShapeTable = new HashSet <string>();

            while ((line = reader.ReadLine()) != null)
            {
                try
                {
                    var array     = line.Split('\t');
                    var tokenizer = TokenizerPool.GetTokenizer();
                    var words     = tokenizer.Tokenize(array[2]);
                    TokenizerPool.ReturnTokenizer(tokenizer);
                    foreach (var w in words)
                    {
                        if (!string.IsNullOrEmpty(w))   // w should not be empty
                        {
                            var shape = Feature.GetWordShape(w);
                            if (!wordShapeTable.Contains(shape))
                            {
                                wordShapeWriter.WriteLine(shape);
                                wordShapeTable.Add(shape);
                            }
                            var word = Generalizer.Generalize(w);
                            if (!wordTable.Contains(word))
                            {
                                writer.WriteLine(word);
                                wordTable.Add(word);
                            }
                        }
                    }
                }
                catch (Exception e)
                {
                    Console.WriteLine("=================error!===============");
                    Console.WriteLine("\t" + e.Message);
                    Console.WriteLine("\t" + e.StackTrace);
                    Console.WriteLine("=================error!===============");
                    continue;
                }
            }
            reader.Close();
            writer.Close();
        }
コード例 #13
0
ファイル: OpenNer.cs プロジェクト: v-mipeng/EntityTyping
        private void Initial()
        {
            var basedir          = (string)GlobalParameter.Get(DefaultParameter.Field.opennlp_model_dir);
            var modelInputStream = new java.io.FileInputStream(Path.Combine(basedir, "en-ner-location.bin")); //load the name model into a stream
            var model            = new opennlp.tools.namefind.TokenNameFinderModel(modelInputStream);         //load the model

            locationNameFinder = new opennlp.tools.namefind.NameFinderME(model);                              //create the namefinder
            modelInputStream   = new java.io.FileInputStream(Path.Combine(basedir, "en-ner-person.bin"));
            model                  = new opennlp.tools.namefind.TokenNameFinderModel(modelInputStream);
            personNameFinder       = new opennlp.tools.namefind.NameFinderME(model);
            modelInputStream       = new java.io.FileInputStream(Path.Combine(basedir, "en-ner-organization.bin"));
            model                  = new opennlp.tools.namefind.TokenNameFinderModel(modelInputStream);
            organizationNameFinder = new opennlp.tools.namefind.NameFinderME(model);
        }
コード例 #14
0
        void  Initial()
        {
            // Create StanfordCoreNLP object properties, with POS tagging
            // (required for lemmatization), and lemmatization
            Properties props;

            props = new Properties();
            props.put("annotators", "tokenize, ssplit, pos,lemma");
            props.setProperty("tokenizer.whitespace", "true");
            props.setProperty("ssplit.eolonly", "true");
            var dir = Directory.GetCurrentDirectory();

            props.setProperty("ner.useSUTime", "false");
            //Directory.SetCurrentDirectory(@"E:\Users\v-mipeng\Software Install\Stanford NLP\stanford-corenlp-full-2015-04-20\");
            Directory.SetCurrentDirectory((string)GlobalParameter.Get(DefaultParameter.Field.stanford_model_dir));
            pipeline = new StanfordCoreNLP(props);
            Directory.SetCurrentDirectory(dir);
        }
コード例 #15
0
ファイル: Pipeline.cs プロジェクト: v-mipeng/EntityTyping
        private void OutputDicTypeValue()
        {
            var dic    = DataCenter.GetDicTyeMap();
            var writer = new LargeFileWriter((string)GlobalParameter.Get(DefaultParameter.Field.dic_type_value_file), FileMode.OpenOrCreate);

            foreach (var key in dic.Keys)
            {
                if (GlobalParameter.featureNum != 0)
                {
                    writer.WriteLine(key + "\t" + (GlobalParameter.featureNum - DataCenter.GetDicTypeNum() + dic[key]));
                }
                else
                {
                    writer.WriteLine(key + "\t" + dic[key]);
                }
            }
            writer.Close();
        }
コード例 #16
0
ファイル: StanfordNer.cs プロジェクト: v-mipeng/EntityTyping
        void Initial()
        {
            // Create StanfordCoreNLP object properties, with POS tagging
            // (required for lemmatization), and lemmatization
            Properties props;

            props = new Properties();
            props.put("annotators", "tokenize, ssplit, pos,lemma, ner");
            props.setProperty("tokenizer.whitespace", "true");
            props.setProperty("ssplit.eolonly", "true");
            props.setProperty("ner.useSUTime", "0");
            //props.setProperty("ner.model", @"D:\Codes\C#\EntityTyping\Fine-ner\input\stanford models\edu\stanford\nlp\models\ner\english.all.3class.distsim.crf.ser.gz");
            var dir = Directory.GetCurrentDirectory();

            Directory.SetCurrentDirectory((string)GlobalParameter.Get(DefaultParameter.Field.stanford_model_dir));
            pipeline = new StanfordCoreNLP(props);
            Directory.SetCurrentDirectory(dir);
        }
コード例 #17
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        public static void LoadDBpedia()
        {
            lock (dbpediaDicLocker)
            {
                if (dbpediaEntity2Type == null)
                {
                    var    dic    = new Dictionary <string, object>();
                    object types  = null;
                    var    reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.dbpedia_dic_file));
                    var    line   = "";
                    System.Text.RegularExpressions.Regex regex       = new System.Text.RegularExpressions.Regex(@"_+");
                    System.Text.RegularExpressions.Regex deleteBrace = new System.Text.RegularExpressions.Regex(@"\(\w+\)");

                    while ((line = reader.ReadLine()) != null)
                    {
                        line = line.ToLower();
                        var array  = line.Split('\t');
                        var entity = deleteBrace.Replace(array[0], "");
                        entity = regex.Replace(entity, "").Trim();    // does not contains space
                        if (dic.TryGetValue(entity, out types))
                        {
                            if (types.GetType().Equals(typeof(string)))
                            {
                                var set = new HashSet <string>();
                                set.Add((string)types);
                                set.Add(array[1]);
                                dic[entity] = set;
                            }
                            else
                            {
                                ((HashSet <string>)types).Add(array[1]);
                            }
                        }
                        else
                        {
                            dic[entity] = array[1];
                        }
                    }
                    reader.Close();
                    dbpediaEntity2Type = dic;
                }
            }
        }
コード例 #18
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        /*Read name list from file
         */
        private static void LoadNameSet()
        {
            fullNameSet = new HashSet <string>();
            partNameSet = new HashSet <string>();
            FileReader reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.name_list_file));
            String     line;

            String[] array;

            while ((line = reader.ReadLine()) != null)
            {
                array = line.Split(' ');
                fullNameSet.Add(line);
                foreach (var x in array)
                {
                    partNameSet.Add(x);
                }
            }
            reader.Close();
        }
コード例 #19
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadPageAnchors()
        {
            lock (pageAnchorLocker)
            {
                if (pageAnchorsDic == null)
                {
                    var reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.page_anchor_file));
                    var line   = "";
                    var dic    = new Dictionary <string, List <string> >();

                    while ((line = reader.ReadLine()) != null)
                    {
                        var array = line.Split('\t');
                        var list  = array.ToList();
                        dic[array[0]] = list;       // Depend on file format
                        list.RemoveAt(0);
                    }
                    reader.Close();
                    pageAnchorsDic = dic;
                }
            }
        }
コード例 #20
0
ファイル: Pipeline.cs プロジェクト: v-mipeng/EntityTyping
 private void Train(HashSet <string> options)
 {
     if (options == null)
     {
         options = new HashSet <string>(new string [] { "b" });
     }
     // train with bayes model
     if (options.Contains("b"))
     {
         var trainer = new BayesModel((string)GlobalParameter.Get(DefaultParameter.Field.train_feature_file),
                                      (string)GlobalParameter.Get(DefaultParameter.Field.model_file));
         try
         {
             trainer.Train();
         }
         catch (Exception e)
         {
             Console.WriteLine("Error occur during train for " + e.Message);
             throw new Exception();
         }
     }
 }
コード例 #21
0
ファイル: Pipeline.cs プロジェクト: v-mipeng/EntityTyping
 private void Test(HashSet <string> options)
 {
     if (options == null)
     {
         options = new HashSet <string>(new string[] { "b" });
     }
     // test with bayes model
     if (options.Contains("b"))
     {
         var tester = new BayesTest((string)GlobalParameter.Get(DefaultParameter.Field.model_file),
                                    (string)GlobalParameter.Get(DefaultParameter.Field.develop_feature_file),
                                    (string)GlobalParameter.Get(DefaultParameter.Field.test_result_file));
         try
         {
             tester.Test();
         }
         catch (Exception e)
         {
             Console.WriteLine("Error occurs during test for " + e.Message);
             throw new Exception();
         }
     }
 }
コード例 #22
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadDisambiguous()
        {
            lock (disambiguousLocker)
            {
                if (disambiguousDic == null)
                {
                    var dic    = new Dictionary <string, List <string> >();
                    var reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.disambiguous_file));
                    var line   = "";
                    System.Text.RegularExpressions.Regex deleteUnderline = new System.Text.RegularExpressions.Regex(@"_+");

                    while ((line = reader.ReadLine()) != null)
                    {
                        var l     = deleteUnderline.Replace(line, "");
                        var array = line.Split('\t').ToList();
                        dic[array[0]] = array;
                        array.RemoveAt(0);
                    }
                    reader.Close();
                    disambiguousDic = dic;
                }
            }
        }
コード例 #23
0
ファイル: DataCenter.cs プロジェクト: v-mipeng/EntityTyping
        private static void LoadKeyWords()
        {
            lock (keyWordLocker)
            {
                if (keyWords == null)
                {
                    var reader = new LargeFileReader((string)GlobalParameter.Get(DefaultParameter.Field.keyword_file));
                    var line   = "";
                    var dic    = new Dictionary <string, int>();
                    var token  = "";

                    while ((line = reader.ReadLine()) != null)
                    {
                        if (!dic.ContainsKey((token = line.Trim())))
                        {
                            dic[token] = dic.Count;
                        }
                    }
                    reader.Close();
                    dic["NONE"] = dic.Count;
                    keyWords    = dic;
                }
            }
        }
コード例 #24
0
ファイル: Pipeline.cs プロジェクト: v-mipeng/EntityTyping
 /// <summary>
 ///  Extract feature
 /// </summary>
 /// <param name="options">
 ///        b               :    extract feature for bayes model (default)
 ///        s                :    extract feature for svm model
 ///        all             :    extract all data feature (default)
 ///        train         :    extract train data feature
 ///        dev           :    extract develop data feature
 ///        test           :    extract test data feature
 /// </param>
 private void ExtractFeature(HashSet <string> options)
 {
     if (options == null)
     {
         // set default options
         options = new HashSet <string>(new string[] { "bayes", "all" });
     }
     if (options.Contains("bayes"))
     {
         // extract features for bayes model
         if (options.Contains("train") || options.Contains("all"))
         {
             ExtractBayesFeature((string)GlobalParameter.Get(DefaultParameter.Field.train_data_file),
                                 (string)GlobalParameter.Get(DefaultParameter.Field.train_feature_file));
         }
         if (options.Contains("dev") || options.Contains("all"))
         {
             ExtractBayesFeature((string)GlobalParameter.Get(DefaultParameter.Field.develop_data_file),
                                 (string)GlobalParameter.Get(DefaultParameter.Field.develop_feature_file));
         }
         if (options.Contains("test") || options.Contains("all"))
         {
             ExtractBayesFeature((string)GlobalParameter.Get(DefaultParameter.Field.test_data_file),
                                 (string)GlobalParameter.Get(DefaultParameter.Field.test_feature_file));
         }
     }
     else if (options.Contains("svm"))
     {
         // extract features for svm model
         if (options.Contains("train") || options.Contains("all"))
         {
             var extractor = new ParallelSVMFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.train_data_file),
                                                             (string)GlobalParameter.Get(DefaultParameter.Field.train_feature_file));
             extractor.ExtractFeature();
         }
         if (options.Contains("dev") || options.Contains("all"))
         {
             var extractor = new ParallelSVMFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.develop_data_file),
                                                             (string)GlobalParameter.Get(DefaultParameter.Field.develop_feature_file));
             extractor.ExtractFeature();
         }
         if (options.Contains("test") || options.Contains("all"))
         {
             var extractor = new ParallelSVMFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.test_data_file),
                                                             (string)GlobalParameter.Get(DefaultParameter.Field.test_feature_file));
             extractor.ExtractFeature();
         }
     }
     else if (options.Contains("me"))
     {
         // extract features for svm model
         if (options.Contains("train") || options.Contains("all"))
         {
             var extractor = new ParallelMaxEntFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.train_data_file),
                                                                (string)GlobalParameter.Get(DefaultParameter.Field.train_feature_file));
             extractor.ExtractFeature();
         }
         if (options.Contains("dev") || options.Contains("all"))
         {
             var extractor = new ParallelMaxEntFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.develop_data_file),
                                                                (string)GlobalParameter.Get(DefaultParameter.Field.develop_feature_file));
             extractor.ExtractFeature();
         }
         if (options.Contains("test") || options.Contains("all"))
         {
             var extractor = new ParallelMaxEntFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.test_data_file),
                                                                (string)GlobalParameter.Get(DefaultParameter.Field.test_feature_file));
             extractor.ExtractFeature();
         }
     }
     else if (options.Contains("raw"))
     {
         // extract raw features
         if (options.Contains("train") || options.Contains("all"))
         {
             var extractor = new ParallelIndividualFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.train_data_file),
                                                                    (string)GlobalParameter.Get(DefaultParameter.Field.train_feature_file));
             if (options.Contains("add"))
             {
                 extractor.AddFeature();
             }
             else
             {
                 extractor.ExtractFeature();
             }
         }
         if (options.Contains("dev") || options.Contains("all"))
         {
             var extractor = new ParallelIndividualFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.develop_data_file),
                                                                    (string)GlobalParameter.Get(DefaultParameter.Field.develop_feature_file));
             if (options.Contains("add"))
             {
                 extractor.AddFeature();
             }
             else
             {
                 extractor.ExtractFeature();
             }
         }
         if (options.Contains("test") || options.Contains("all"))
         {
             var extractor = new ParallelIndividualFeatureExtractor((string)GlobalParameter.Get(DefaultParameter.Field.test_data_file),
                                                                    (string)GlobalParameter.Get(DefaultParameter.Field.test_feature_file));
             if (options.Contains("add"))
             {
                 extractor.AddFeature();
             }
             else
             {
                 extractor.ExtractFeature();
             }
         }
     }
 }