コード例 #1
0
        void sync_update(object o, int param)  //(void *, INT32)
        {
            update();
            attotime      time      = m_device.machine().time();
            attoseconds_t next_edge = m_attoseconds_per_sample - (time.attoseconds() % m_attoseconds_per_sample);

            m_sync_timer.adjust(new attotime(0, next_edge));
        }
コード例 #2
0
        attotime m_last_update;                                                    // last update time


        // construction/destruction

        //-------------------------------------------------
        //  sound_manager - constructor
        //-------------------------------------------------
        public sound_manager(running_machine machine)
        {
            m_machine            = machine;
            m_update_timer       = null;
            m_finalmix_leftover  = 0;
            m_finalmix           = new std.vector <s16>(machine.sample_rate());
            m_leftmix            = new std.vector <s32>(machine.sample_rate());
            m_rightmix           = new std.vector <s32>(machine.sample_rate());
            m_nosound_mode       = machine.osd().no_sound() ? 1 : 0;
            m_wavfile            = null;
            m_update_attoseconds = STREAMS_UPDATE_ATTOTIME.attoseconds();
            m_last_update        = attotime.zero;


            // get filename for WAV file or AVI file if specified
            string wavfile = machine.options().wav_write();
            string avifile = machine.options().avi_write();

            // handle -nosound and lower sample rate if not recording WAV or AVI
            if (m_nosound_mode != 0 && string.IsNullOrEmpty(wavfile) && string.IsNullOrEmpty(avifile))
            {
                machine.sample_rate_set(11025);
            }

            // count the mixers
            if (sound_global.VERBOSE)
            {
                mixer_interface_iterator iter = new mixer_interface_iterator(machine.root_device());
                sound_global.VPRINTF("total mixers = {0}\n", iter.count());
            }

            // register callbacks
            machine.configuration().config_register("mixer", config_load, config_save);
            machine.add_notifier(machine_notification.MACHINE_NOTIFY_PAUSE, pause);
            machine.add_notifier(machine_notification.MACHINE_NOTIFY_RESUME, resume);
            machine.add_notifier(machine_notification.MACHINE_NOTIFY_RESET, reset);
            machine.add_notifier(machine_notification.MACHINE_NOTIFY_EXIT, stop_recording);

            // register global states
            machine.save().save_item(m_last_update, "m_last_update");

            // set the starting attenuation
            set_attenuation(machine.options().volume());

            // start the periodic update flushing timer
            m_update_timer = machine.scheduler().timer_alloc(update, this);
            m_update_timer.adjust(STREAMS_UPDATE_ATTOTIME, 0, STREAMS_UPDATE_ATTOTIME);
        }
コード例 #3
0
        //-------------------------------------------------
        //  update - force a stream to update to
        //  the current emulated time
        //-------------------------------------------------
        public void update()
        {
            if (m_attoseconds_per_sample == 0)
            {
                return;
            }

            // determine the number of samples since the start of this second
            attotime time             = m_device.machine().time();
            int      update_sampindex = (int)(time.attoseconds() / m_attoseconds_per_sample);

            // if we're ahead of the last update, then adjust upwards
            attotime last_update = m_device.machine().sound().last_update();

            if (time.seconds() > last_update.seconds())
            {
                assert(time.seconds() == last_update.seconds() + 1);
                update_sampindex += (int)m_sample_rate;
            }

            // if we're behind the last update, then adjust downwards
            if (time.seconds() < last_update.seconds())
            {
                assert(time.seconds() == last_update.seconds() - 1);
                update_sampindex -= (int)m_sample_rate;
            }

            if (update_sampindex <= m_output_sampindex)
            {
                return;
            }

            // generate samples to get us up to the appropriate time
            profiler_global.g_profiler.start(profile_type.PROFILER_SOUND);

            //throw new emu_unimplemented();
#if false
            osdcomm_global.assert(m_output_sampindex - m_output_base_sampindex >= 0);
            osdcomm_global.assert(update_sampindex - m_output_base_sampindex <= m_output_bufalloc);
#endif

            generate_samples(update_sampindex - m_output_sampindex);
            profiler_global.g_profiler.stop();

            // remember this info for next time
            m_output_sampindex = update_sampindex;
        }
コード例 #4
0
        //-------------------------------------------------
        //  add_scheduling_quantum - add a scheduling
        //  quantum; the smallest active one is the one
        //  that is in use
        //-------------------------------------------------
        void add_scheduling_quantum(attotime quantum, attotime duration)
        {
            assert(quantum.seconds() == 0);

            attotime      curtime       = time();
            attotime      expire        = curtime + duration;
            attoseconds_t quantum_attos = quantum.attoseconds();

            // figure out where to insert ourselves, expiring any quanta that are out-of-date
            quantum_slot insert_after = null;
            quantum_slot next;

            for (quantum_slot quant = m_quantum_list.first(); quant != null; quant = next)
            {
                // if this quantum is expired, nuke it
                next = quant.next();
                if (curtime >= quant.expire())
                {
                    m_quantum_allocator.reclaim(m_quantum_list.detach(quant));
                }

                // if this quantum is shorter than us, we need to be inserted afterwards
                else if (quant.requested() <= quantum_attos)
                {
                    insert_after = quant;
                }
            }

            // if we found an exact match, just take the maximum expiry time
            if (insert_after != null && insert_after.requested() == quantum_attos)
            {
                insert_after.expire_set(std.max(insert_after.expire(), expire));
            }

            // otherwise, allocate a new quantum and insert it after the one we picked
            else
            {
                quantum_slot quant = m_quantum_allocator.alloc();
                quant.requested_set(quantum_attos);
                quant.actual_set(std.max(quantum_attos, m_quantum_minimum));
                quant.expire_set(expire);
                m_quantum_list.insert_after(quant, insert_after);
            }
        }
コード例 #5
0
        // internal helpers

        //-------------------------------------------------
        //  recompute_sample_rate_data - recompute sample
        //  rate data, and all streams that are affected
        //  by this stream
        //-------------------------------------------------
        void recompute_sample_rate_data()
        {
            if (m_synchronous)
            {
                m_sample_rate = 0;
                // When synchronous, pick the sample rate for the inputs, if any
                for (int inputnum = 0; inputnum < m_input.size(); inputnum++)
                {
                    stream_input input = m_input[inputnum];
                    if (input.m_source != null)
                    {
                        if (m_sample_rate == 0)
                        {
                            m_sample_rate = input.m_source.m_stream.m_sample_rate;
                        }
                        else if (m_sample_rate != input.m_source.m_stream.m_sample_rate)
                        {
                            throw new emu_fatalerror("Incompatible sample rates as input of a synchronous stream: {0} and {1}\n", m_sample_rate, input.m_source.m_stream.m_sample_rate);
                        }
                    }
                }
            }


            // recompute the timing parameters
            attoseconds_t update_attoseconds = m_device.machine().sound().update_attoseconds();

            if (m_sample_rate != 0)
            {
                m_attoseconds_per_sample = attotime.ATTOSECONDS_PER_SECOND / m_sample_rate;
                m_max_samples_per_update = (int)((update_attoseconds + m_attoseconds_per_sample - 1) / m_attoseconds_per_sample);
            }
            else
            {
                m_attoseconds_per_sample = 0;
                m_max_samples_per_update = 0;
            }

            // update resample and output buffer sizes
            allocate_resample_buffers();
            allocate_output_buffers();

            // iterate over each input
            for (int inputnum = 0; inputnum < m_input.size(); inputnum++)  // for (auto & input : m_input)
            {
                var input = m_input[inputnum];

                // if we have a source, see if its sample rate changed
                if (input.m_source != null && input.m_source.m_stream.m_sample_rate != 0)
                {
                    // okay, we have a new sample rate; recompute the latency to be the maximum
                    // sample period between us and our input
                    attoseconds_t new_attosecs_per_sample = attotime.ATTOSECONDS_PER_SECOND / input.m_source.m_stream.m_sample_rate;
                    attoseconds_t latency = Math.Max(new_attosecs_per_sample, m_attoseconds_per_sample);

                    // if the input stream's sample rate is lower, we will use linear interpolation
                    // this requires an extra sample from the source
                    if (input.m_source.m_stream.m_sample_rate < m_sample_rate)
                    {
                        latency += new_attosecs_per_sample;
                    }

                    // if our sample rates match exactly, we don't need any latency
                    else if (input.m_source.m_stream.m_sample_rate == m_sample_rate)
                    {
                        latency = 0;
                    }

                    // we generally don't want to tweak the latency, so we just keep the greatest
                    // one we've computed thus far
                    input.m_latency_attoseconds = Math.Max(input.m_latency_attoseconds, latency);

                    //throw new emu_unimplemented();
#if false
                    assert(input.m_latency_attoseconds < update_attoseconds);
#endif
                }
                else
                {
                    input.m_latency_attoseconds = 0;
                }
            }

            // If synchronous, prime the timer
            if (m_synchronous)
            {
                attotime time = m_device.machine().time();
                if (m_attoseconds_per_sample != 0)
                {
                    attoseconds_t next_edge = m_attoseconds_per_sample - (time.attoseconds() % m_attoseconds_per_sample);
                    m_sync_timer.adjust(new attotime(0, next_edge));
                }
                else
                {
                    m_sync_timer.adjust(attotime.never);
                }
            }
        }
コード例 #6
0
        // execution

        //-------------------------------------------------
        //  timeslice - execute all devices for a single
        //  timeslice
        //-------------------------------------------------
        public void timeslice()
        {
            bool call_debugger = (machine().debug_flags & DEBUG_FLAG_ENABLED) != 0;

            // build the execution list if we don't have one yet
            //if (UNEXPECTED(m_execute_list == null))
            if (m_execute_list == null)
            {
                rebuild_execute_list();
            }

            // if the current quantum has expired, find a new one
            while (m_basetime >= m_quantum_list.first().expire())
            {
                m_quantum_allocator.reclaim(m_quantum_list.detach_head());
            }

            // loop until we hit the next timer
            while (m_basetime < m_timer_list.expire())
            {
                // by default, assume our target is the end of the next quantum
                attotime target = m_basetime + new attotime(0, m_quantum_list.first().actual());

                // however, if the next timer is going to fire before then, override
                if (m_timer_list.expire() < target)
                {
                    target = m_timer_list.expire();
                }

                if (machine().video().frame_update_count() % 1000 == 0)
                {
                    //LOG(("------------------\n"));
                    LOG("device_scheduler.timeslice() - cpu_timeslice: target = {0}, m_timer_list.expire: {1}\n", target.as_string(), m_timer_list.expire().as_string());
                }

                // do we have pending suspension changes?
                if (m_suspend_changes_pending)
                {
                    apply_suspend_changes();
                }

                // loop over all CPUs
                for (device_execute_interface exec = m_execute_list; exec != null; exec = exec.m_nextexec)
                {
                    // only process if this CPU is executing or truly halted (not yielding)
                    // and if our target is later than the CPU's current time (coarse check)
                    if ((exec.m_suspend == 0 || exec.m_eatcycles > 0) && target.seconds() >= exec.m_localtime.seconds())  //if (EXPECTED((exec->m_suspend == 0 || exec->m_eatcycles) && target.seconds() >= exec->m_localtime.seconds()))
                    {
                        // compute how many attoseconds to execute this CPU
                        attoseconds_t delta = target.attoseconds() - exec.m_localtime.attoseconds();
                        if (delta < 0 && target.seconds() > exec.m_localtime.seconds())
                        {
                            delta += ATTOSECONDS_PER_SECOND;
                        }

                        assert(delta == (target - exec.m_localtime).as_attoseconds());

                        if (exec.m_attoseconds_per_cycle == 0)
                        {
                            exec.m_localtime = target;
                        }
                        // if we have enough for at least 1 cycle, do the math
                        else if (delta >= exec.m_attoseconds_per_cycle)
                        {
                            // compute how many cycles we want to execute
                            int ran = exec.m_cycles_running = (int)divu_64x32((u64)delta >> exec.m_divshift, (u32)exec.m_divisor);

                            if (machine().video().frame_update_count() % 1000 == 0)
                            {
                                LOG("device_scheduler.timeslice() - cpu '{0}': {1} ({2} cycles)\n", exec.device().tag(), delta, exec.m_cycles_running);
                            }

                            // if we're not suspended, actually execute
                            if (exec.m_suspend == 0)
                            {
                                g_profiler.start(exec.m_profiler);


                                // note that this global variable cycles_stolen can be modified
                                // via the call to cpu_execute
                                exec.m_cycles_stolen = 0;
                                m_executing_device   = exec;

                                exec.m_icountptr.i = exec.m_cycles_running;  // *exec->m_icountptr = exec->m_cycles_running;

                                if (!call_debugger)
                                {
                                    exec.run();
                                }
                                else
                                {
                                    exec.debugger_start_cpu_hook(target);
                                    exec.run();
                                    exec.debugger_stop_cpu_hook();
                                }

                                // adjust for any cycles we took back

                                //throw new emu_unimplemented();
#if false
                                assert(ran >= *exec->m_icountptr);
#endif

                                ran -= exec.m_icountptr.i;  //ran -= *exec->m_icountptr;

                                //throw new emu_unimplemented();
#if false
                                assert(ran >= exec->m_cycles_stolen);
#endif

                                ran -= exec.m_cycles_stolen;

                                g_profiler.stop();
                            }

                            // account for these cycles
                            exec.m_totalcycles += (u64)ran;

                            // update the local time for this CPU
                            attotime deltatime;
                            if (ran < exec.m_cycles_per_second)
                            {
                                deltatime = new attotime(0, exec.m_attoseconds_per_cycle * ran);
                            }
                            else
                            {
                                u32 remainder;
                                s32 secs = (s32)divu_64x32_rem((u64)ran, exec.m_cycles_per_second, out remainder);
                                deltatime = new attotime(secs, remainder * exec.m_attoseconds_per_cycle);
                            }

                            assert(deltatime >= attotime.zero);
                            exec.m_localtime += deltatime;

                            if (machine().video().frame_update_count() % 100 == 0)
                            {
                                LOG("device_scheduler.timeslice() - {0} ran, {1} total, time = {2}\n", ran, exec.m_totalcycles, exec.m_localtime.as_string());
                            }

                            // if the new local CPU time is less than our target, move the target up, but not before the base
                            if (exec.m_localtime < target)
                            {
                                target = std.max(exec.m_localtime, m_basetime);

                                if (machine().video().frame_update_count() % 1000 == 0)
                                {
                                    LOG("device_scheduler.timeslice() - (new target)\n");
                                }
                            }
                        }
                    }
                }

                m_executing_device = null;

                // update the base time
                m_basetime = target;
            }

            // execute timers
            execute_timers();
        }