コード例 #1
0
ファイル: Program.cs プロジェクト: nullabork/fetcho
        static void Main(string[] args)
        {
            var hackernewsWorkspace    = new Guid("2480be4a-ca1a-4cae-8bb3-654aa0ba8740");
            var scienceWorkspace       = new Guid("698ff939-3eb4-4e65-b93b-ccde24c2838e");
            var newsAndGossipWorkspace = new Guid("0e4622a6-ef4b-4308-b18d-9a4a8a71a50c");
            var randomWorkspace        = new Guid("24f51e4e-951e-453b-957c-1a1dfe475672");

            var schema = new MLModelSchema("news.mlmodel");

            schema.AddDataSource(new FetchoWorkspaceMLModelSchemaCategoryDataSource("news", newsAndGossipWorkspace)
            {
                UseNameForCategory = true
            });
            schema.AddDataSource(new FetchoWorkspaceMLModelSchemaCategoryDataSource("random", randomWorkspace)
            {
                UseNameForCategory = true
            });

            schema.BalanceResults = false;

            var trainer = new MultiClassifierModelTrainer();

            trainer.TrainAndSave(schema);

            var fi = new FileInfo(schema.FilePath);

            Console.WriteLine("Size: {0}kb", fi.Length / 1024);

//            var r = new RedditMLModelSchemaCategoryDataSource("science", "science");
//            var a = r.GetData(5000);
        }
コード例 #2
0
        public void TrainAndSave(MLModelSchema schema)
        {
            var data = schema.GetAllData();

            foreach (var category in data.Select(x => x.Category).Distinct())
            {
                Console.WriteLine("{0}:{1}", category, data.Count(x => x.Category == category));
            }

            MLContext mlContext = new MLContext(null, 1); // 1 concurrency, leave me some CPUs plz

            IDataView trainingDataView = mlContext.Data.LoadFromEnumerable(data);

            var pipeline = mlContext.Transforms.Conversion.MapValueToKey("Category")
                           .Append(mlContext.Transforms.Text.FeaturizeText(inputColumnName: "TextData", outputColumnName: "TextDataFeaturized"))
                           .Append(mlContext.Transforms.Concatenate("Features", "TextDataFeaturized"))
                           .AppendCacheCheckpoint(mlContext)
                           .Append(mlContext.MulticlassClassification.Trainers.StochasticDualCoordinateAscent("Category", DefaultColumnNames.Features))
                           .Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));

            // STEP 4: Train your model based on the data set
            var model = pipeline.Fit(trainingDataView);

            using (var fs = File.OpenWrite(schema.FilePath))
                mlContext.Model.Save(model, fs);
        }