/** * Extract a 96 byte descriptor. */ public void extract(GaussianScaleSpacePyramid pyramid, DogFeaturePointStack points, FreakFeaturePointStack store) { ExtractFREAK84(store, pyramid, points, mPointRing0, mPointRing1, mPointRing2, mPointRing3, mPointRing4, mPointRing5, mSigmaCenter, mSigmaRing0, mSigmaRing1, mSigmaRing2, mSigmaRing3, mSigmaRing4, mSigmaRing5, mExpansionFactor); }
/** * Detect scale-invariant feature points given a pyramid. * @param _i_dog_feature_points * 検出したDOG特徴点 */ public void detect(GaussianScaleSpacePyramid i_pyramid, DogFeaturePointStack i_dog_feature_points) { //clean up 1st feature stack DogFeaturePointStack tmp_fp = this._tmp_fps; tmp_fp.clear(); // Compute Laplacian images (DoG) this.mLaplacianPyramid.compute(i_pyramid); // Detect minima and maximum in Laplacian images this.extractFeatures(i_pyramid, this.mLaplacianPyramid, tmp_fp); // Sub-pixel refinement this.findSubpixelLocations(i_pyramid, tmp_fp); // Compute the gradient pyramid this.mOrientationAssignment.computeGradients(i_pyramid); AreaBuckit abuckit = this.mBuckets; if (tmp_fp.getLength() <= abuckit._buckit.Length) { //特徴点の数が要求数以下なら全てのポイントを使う。 for (int i = 0; i < tmp_fp.getLength(); i++) { this.addFeatureOrientations(i_pyramid, tmp_fp.getItem(i), i_dog_feature_points); } } else { //特徴点を選別(Prune features) // Clear the previous state abuckit.clear(); // Insert each features into a bucket for (int i = 0; i < tmp_fp.getLength(); i++) { DogFeaturePoint p = tmp_fp.getItem(i); abuckit.put(p.x, p.y, i, Math.Abs(p.score)); } // Compute an orientation for each feature point for (int i = 0; i < abuckit._buckit.Length; i++) { if (abuckit._buckit[i].first == 0) { continue; } this.addFeatureOrientations(i_pyramid, tmp_fp.getItem(abuckit._buckit[i].second), i_dog_feature_points); } } return; }
public static NyARNftFreakFsetFile genFeatureSet3(NyARNftIsetFile i_iset_file) { int max_features = 500; DogFeaturePointStack _dog_feature_points = new DogFeaturePointStack(max_features); FreakFeaturePointStack query_keypoint = new FreakFeaturePointStack(max_features); // List <NyARNftFreakFsetFile.RefDataSet> refdataset = new List <NyARNftFreakFsetFile.RefDataSet>(); List <NyARNftFreakFsetFile.ImageInfo> imageinfo = new List <NyARNftFreakFsetFile.ImageInfo>(); for (int ii = 0; ii < i_iset_file.items.Length; ii++) { NyARNftIsetFile.ReferenceImage rimg = i_iset_file.items[ii]; FREAKExtractor mFeatureExtractor = new FREAKExtractor(); int octerves = BinomialPyramid32f.octavesFromMinimumCoarsestSize(rimg.width, rimg.height, 8); BinomialPyramid32f _pyramid = new BinomialPyramid32f(rimg.width, rimg.height, octerves, 3); DoGScaleInvariantDetector _dog_detector = new DoGScaleInvariantDetector(rimg.width, rimg.height, octerves, 3, 3, 4, max_features); //RefDatasetの作成 _pyramid.build(NyARGrayscaleRaster.createInstance(rimg.width, rimg.height, NyARBufferType.INT1D_GRAY_8, rimg.img)); // Detect feature points _dog_feature_points.clear(); _dog_detector.detect(_pyramid, _dog_feature_points); // Extract features query_keypoint.clear(); mFeatureExtractor.extract(_pyramid, _dog_feature_points, query_keypoint); for (int i = 0; i < query_keypoint.getLength(); i++) { FreakFeaturePoint ffp = query_keypoint.getItem(i); NyARNftFreakFsetFile.RefDataSet rds = new NyARNftFreakFsetFile.RefDataSet(); rds.pageNo = 1; rds.refImageNo = ii; rds.coord2D.setValue(ffp.x, ffp.y); rds.coord3D.setValue((ffp.x + 0.5f) / rimg.dpi * 25.4f, ((rimg.height - 0.5f) - ffp.y) / rimg.dpi * 25.4f); rds.featureVec.angle = ffp.angle; rds.featureVec.maxima = ffp.maxima ? 1 : 0; rds.featureVec.scale = ffp.scale; ffp.descripter.getValueLe(rds.featureVec.v); refdataset.Add(rds); } imageinfo.Add(new NyARNftFreakFsetFile.ImageInfo(rimg.width, rimg.height, ii)); } NyARNftFreakFsetFile.PageInfo[] pi = new NyARNftFreakFsetFile.PageInfo[1]; pi[0] = new NyARNftFreakFsetFile.PageInfo(1, imageinfo.ToArray()); return(new NyARNftFreakFsetFile(refdataset.ToArray(), pi)); }
/** * Sub-pixel refinement. */ private void findSubpixelLocations(GaussianScaleSpacePyramid pyramid, DogFeaturePointStack i_dog_fp) { int num_points; double laplacianSqrThreshold; double hessianThreshold; num_points = 0; laplacianSqrThreshold = (this.mLaplacianThreshold * this.mLaplacianThreshold); double te = (mEdgeThreshold + 1); hessianThreshold = ((te * te) / mEdgeThreshold); for (int i = 0; i < i_dog_fp.getLength(); i++) { DogFeaturePoint kp = i_dog_fp.getItem(i); //assert kp.scale < mLaplacianPyramid.numScalePerOctave(); // ASSERT(kp.scale < mLaplacianPyramid.numScalePerOctave(), // "Feature point scale is out of bounds"); int lap_index = kp.octave * mLaplacianPyramid.numScalePerOctave() + kp.scale; // Get Laplacian images LaplacianImage lap0 = mLaplacianPyramid.get(lap_index - 1); LaplacianImage lap1 = mLaplacianPyramid.get(lap_index); LaplacianImage lap2 = mLaplacianPyramid.get(lap_index + 1); // Compute the Hessian if (!this.updateLocation(kp, lap0, lap1, lap2)) { continue; } if (Math.Abs(kp.edge_score) < hessianThreshold && (kp.score * kp.score) >= laplacianSqrThreshold && kp.x >= 0 && kp.x < mLaplacianPyramid.get(0).getWidth() && kp.y >= 0 && kp.y < mLaplacianPyramid.get(0).getHeight()) { // Update the sigma kp.sigma = pyramid.effectiveSigma(kp.octave, kp.sp_scale); i_dog_fp.swap(i, num_points++); } } i_dog_fp.setLength(num_points); }
/** * Extract the descriptors for all the feature points. */ private void ExtractFREAK84(FreakFeaturePointStack store, GaussianScaleSpacePyramid pyramid, DogFeaturePointStack points, double[] points_ring0, double[] points_ring1, double[] points_ring2, double[] points_ring3, double[] points_ring4, double[] points_ring5, double sigma_center, double sigma_ring0, double sigma_ring1, double sigma_ring2, double sigma_ring3, double sigma_ring4, double sigma_ring5, double expansion_factor) { // ASSERT(pyramid, "Pyramid is NULL"); // ASSERT(store.size() == points.size(), // "Feature store has not been allocated"); for (int i = 0; i < points.getLength(); i++) { FreakFeaturePoint sp = store.prePush(); if (sp == null) { prepush_wawning(); break; } DogFeaturePoint pt = points.getItem(i); if (!ExtractFREAK84(sp.descripter, pyramid, pt, points_ring0, points_ring1, points_ring2, points_ring3, points_ring4, points_ring5, sigma_center, sigma_ring0, sigma_ring1, sigma_ring2, sigma_ring3, sigma_ring4, sigma_ring5, expansion_factor )) { store.pop(); continue; } sp.angle = pt.angle; sp.x = pt.x; sp.y = pt.y; sp.scale = pt.sigma; sp.maxima = pt.score > 0; // store.point(num_points).set(points[i]); } }
private void addFeatureOrientations(GaussianScaleSpacePyramid i_pyramid, DogFeaturePoint dfp, DogFeaturePointStack i_ot_fps) { double[] tmp = this._addFeatureOrientations_tmp; double x, y, s; // Down sample the point to the detected octave bilinear_downsample_point(tmp, dfp.x, dfp.y, dfp.sigma, dfp.octave); x = tmp[0]; y = tmp[1]; s = tmp[2]; // Downsampling the point can cause (x,y) to leave the image bounds // by // a tiny amount. Here we just clip it to be within the image // bounds. x = ClipScalar(x, 0, i_pyramid.get(dfp.octave, 0).getWidth() - 1); y = ClipScalar(y, 0, i_pyramid.get(dfp.octave, 0).getHeight() - 1); // Compute dominant orientations int num_angles = mOrientationAssignment.compute(dfp.octave, dfp.scale, x, y, s, this.mOrientations); // Create a feature point for each angle for (int j = 0; j < num_angles; j++) { // Copy the feature point DogFeaturePoint fp = i_ot_fps.prePush(); if (fp == null) { //中断 // prepush_warning(); break; } fp.x = dfp.x; fp.y = dfp.y; fp.octave = dfp.octave; fp.scale = dfp.scale; fp.sp_scale = dfp.sp_scale; fp.score = dfp.score; fp.sigma = dfp.sigma; fp.edge_score = dfp.edge_score; fp.angle = mOrientations[j]; } return; }
/** * Extract the minima/maxima. */ private void extractFeatures(GaussianScaleSpacePyramid pyramid, DoGPyramid laplacian, DogFeaturePointStack i_dog_fp) { double laplacianSqrThreshold = (this.mLaplacianThreshold * this.mLaplacianThreshold); for (int i = 1; i < mLaplacianPyramid.size() - 1; i++) { LaplacianImage im0 = laplacian.get(i - 1); LaplacianImage im1 = laplacian.get(i); LaplacianImage im2 = laplacian.get(i + 1); double[] im0b = (double[])im0.getBuffer(); double[] im1b = (double[])im1.getBuffer(); double[] im2b = (double[])im2.getBuffer(); int octave = laplacian.octaveFromIndex((int)i); int scale = laplacian.scaleFromIndex((int)i); if (im0.getWidth() == im1.getWidth() && im0.getWidth() == im2.getWidth()) { // All images are the // same size // ASSERT(im0.height() == im1.height(), "Height is inconsistent"); // ASSERT(im0.height() == im2.height(), "Height is inconsistent"); int width_minus_1 = im1.getWidth() - 1; int heigh_minus_1 = im1.getHeight() - 1; for (int row = 1; row < heigh_minus_1; row++) { int im0_ym1 = im0.get(row - 1); int im0_y = im0.get(row); int im0_yp1 = im0.get(row + 1); int im1_ym1 = im1.get(row - 1); int im1_y = im1.get(row); int im1_yp1 = im1.get(row + 1); int im2_ym1 = im2.get(row - 1); int im2_y = im2.get(row); int im2_yp1 = im2.get(row + 1); for (int col = 1; col < width_minus_1; col++) { double value = im1b[im1_y + col]; // Check laplacian score if ((value * value) < laplacianSqrThreshold) { continue; } bool extrema = false; if (value > im0b[im0_ym1 + col - 1] && value > im0b[im0_ym1 + col] && value > im0b[im0_ym1 + col + 1] && value > im0b[im0_y + col - 1] && value > im0b[im0_y + col] && value > im0b[im0_y + col + 1] && value > im0b[im0_yp1 + col - 1] && value > im0b[im0_yp1 + col] && value > im0b[im0_yp1 + col + 1] && /* im1 - 8 evaluations */ value > im1b[im1_ym1 + col - 1] && value > im1b[im1_ym1 + col] && value > im1b[im1_ym1 + col + 1] && value > im1b[im1_y + col - 1] && value > im1b[im1_y + col + 1] && value > im1b[im1_yp1 + col - 1] && value > im1b[im1_yp1 + col] && value > im1b[im1_yp1 + col + 1] && /* im2 - 9 evaluations */ value > im2b[im2_ym1 + col - 1] && value > im2b[im2_ym1 + col] && value > im2b[im2_ym1 + col + 1] && value > im2b[im2_y + col - 1] && value > im2b[im2_y + col] && value > im2b[im2_y + col + 1] && value > im2b[im2_yp1 + col - 1] && value > im2b[im2_yp1 + col] && value > im2b[im2_yp1 + col + 1]) { extrema = true; } else if (value < im0b[im0_ym1 + col - 1] && value < im0b[im0_ym1 + col] && value < im0b[im0_ym1 + col + 1] && value < im0b[im0_y + col - 1] && value < im0b[im0_y + col] && value < im0b[im0_y + col + 1] && value < im0b[im0_yp1 + col - 1] && value < im0b[im0_yp1 + col] && value < im0b[im0_yp1 + col + 1] && /* im1 - 8 evaluations */ value < im1b[im1_ym1 + col - 1] && value < im1b[im1_ym1 + col] && value < im1b[im1_ym1 + col + 1] && value < im1b[im1_y + col - 1] && value < im1b[im1_y + col + 1] && value < im1b[im1_yp1 + col - 1] && value < im1b[im1_yp1 + col] && value < im1b[im1_yp1 + col + 1] && /* im2 - 9 evaluations */ value < im2b[im2_ym1 + col - 1] && value < im2b[im2_ym1 + col] && value < im2b[im2_ym1 + col + 1] && value < im2b[im2_y + col - 1] && value < im2b[im2_y + col] && value < im2b[im2_y + col + 1] && value < im2b[im2_yp1 + col - 1] && value < im2b[im2_yp1 + col] && value < im2b[im2_yp1 + col + 1]) { extrema = true; } if (extrema) { DogFeaturePoint fp = i_dog_fp.prePush(); if (fp == null) { prepush_warning(); break; } fp.octave = octave; fp.scale = scale; fp.score = value; fp.sigma = pyramid.effectiveSigma(octave, scale); double[] tmp = new double[2]; bilinear_upsample_point(tmp, col, row, octave); fp.x = tmp[0]; fp.y = tmp[1]; } } } } else if (im0.getWidth() == im1.getWidth() && (im1.getWidth() >> 1) == im2.getWidth()) { int end_x = (int)Math.Floor(((im2.getWidth() - 1) - 0.5f) * 2.0f + 0.5f); int end_y = (int)Math.Floor(((im2.getHeight() - 1) - 0.5f) * 2.0f + 0.5f); for (int row = 2; row < end_y; row++) { int im0_ym1 = im0.get(row - 1); int im0_y = im0.get(row); int im0_yp1 = im0.get(row + 1); int im1_ym1 = im1.get(row - 1); int im1_y = im1.get(row); int im1_yp1 = im1.get(row + 1); for (int col = 2; col < end_x; col++) { double value = im1b[im1_y + col]; // Check laplacian score if ((value * value) < laplacianSqrThreshold) { continue; } // Compute downsampled point location double ds_x = col * 0.5f - 0.25f; double ds_y = row * 0.5f - 0.25f; bool extrema = false; if ( /* im0 - 9 evaluations */ value > im0b[im0_ym1 + col - 1] && value > im0b[im0_ym1 + col] && value > im0b[im0_ym1 + col + 1] && value > im0b[im0_y + col - 1] && value > im0b[im0_y + col] && value > im0b[im0_y + col + 1] && value > im0b[im0_yp1 + col - 1] && value > im0b[im0_yp1 + col] && value > im0b[im0_yp1 + col + 1] && /* im1 - 8 evaluations */ value > im1b[im1_ym1 + col - 1] && value > im1b[im1_ym1 + col] && value > im1b[im1_ym1 + col + 1] && value > im1b[im1_y + col - 1] && value > im1b[im1_y + col + 1] && value > im1b[im1_yp1 + col - 1] && value > im1b[im1_yp1 + col] && value > im1b[im1_yp1 + col + 1] && /* im2 - 9 evaluations */ value > im2.bilinearInterpolation(ds_x - 0.5f, ds_y - 0.5f) && value > im2.bilinearInterpolation(ds_x, ds_y - 0.5f) && value > im2.bilinearInterpolation(ds_x + 0.5f, ds_y - 0.5f) && value > im2.bilinearInterpolation(ds_x - 0.5f, ds_y) && value > im2.bilinearInterpolation(ds_x, ds_y) && value > im2.bilinearInterpolation(ds_x + 0.5f, ds_y) && value > im2.bilinearInterpolation(ds_x - 0.5f, ds_y + 0.5f) && value > im2.bilinearInterpolation(ds_x, ds_y + 0.5f) && value > im2.bilinearInterpolation(ds_x + 0.5f, ds_y + 0.5f)) { extrema = true; } else if ( /* im0 - 9 evaluations */ value < im0b[im0_ym1 + col - 1] && value < im0b[im0_ym1 + col] && value < im0b[im0_ym1 + col + 1] && value < im0b[im0_y + col - 1] && value < im0b[im0_y + col] && value < im0b[im0_y + col + 1] && value < im0b[im0_yp1 + col - 1] && value < im0b[im0_yp1 + col] && value < im0b[im0_yp1 + col + 1] && /* im1 - 8 evaluations */ value < im1b[im1_ym1 + col - 1] && value < im1b[im1_ym1 + col] && value < im1b[im1_ym1 + col + 1] && value < im1b[im1_y + col - 1] && value < im1b[im1_y + col + 1] && value < im1b[im1_yp1 + col - 1] && value < im1b[im1_yp1 + col] && value < im1b[im1_yp1 + col + 1] && /* im2 - 9 evaluations */ value < im2.bilinearInterpolation(ds_x - 0.5f, ds_y - 0.5f) && value < im2.bilinearInterpolation(ds_x, ds_y - 0.5f) && value < im2.bilinearInterpolation(ds_x + 0.5f, ds_y - 0.5f) && value < im2.bilinearInterpolation(ds_x - 0.5f, ds_y) && value < im2.bilinearInterpolation(ds_x, ds_y) && value < im2.bilinearInterpolation(ds_x + 0.5f, ds_y) && value < im2.bilinearInterpolation(ds_x - 0.5f, ds_y + 0.5f) && value < im2.bilinearInterpolation(ds_x, ds_y + 0.5f) && value < im2.bilinearInterpolation(ds_x + 0.5f, ds_y + 0.5f)) { extrema = true; } if (extrema) { DogFeaturePoint fp = i_dog_fp.prePush(); if (fp == null) { prepush_warning(); break; } fp.octave = octave; fp.scale = scale; fp.score = value; fp.sigma = pyramid.effectiveSigma(octave, scale); double[] tmp = new double[2]; bilinear_upsample_point(tmp, col, row, octave); fp.x = tmp[0]; fp.y = tmp[1]; } } } } else if ((im0.getWidth() >> 1) == im1.getWidth() && (im0.getWidth() >> 1) == im2.getWidth()) { int width_minus_1 = im1.getWidth() - 1; int height_minus_1 = im1.getHeight() - 1; for (int row = 1; row < height_minus_1; row++) { int im1_ym1 = im1.get(row - 1); int im1_y = im1.get(row); int im1_yp1 = im1.get(row + 1); int im2_ym1 = im2.get(row - 1); int im2_y = im2.get(row); int im2_yp1 = im2.get(row + 1); for (int col = 1; col < width_minus_1; col++) { double value = im1b[im1_y + col]; // Check laplacian score if ((value * value) < laplacianSqrThreshold) { continue; } double us_x = (col << 1) + 0.5f; double us_y = (row << 1) + 0.5f; bool extrema = false; if (value > im1b[im1_ym1 + col - 1] && value > im1b[im1_ym1 + col] && value > im1b[im1_ym1 + col + 1] && value > im1b[im1_y + col - 1] && value > im1b[im1_y + col + 1] && value > im1b[im1_yp1 + col - 1] && value > im1b[im1_yp1 + col] && value > im1b[im1_yp1 + col + 1] && /* im2 - 9 evaluations */ value > im2b[im2_ym1 + col - 1] && value > im2b[im2_ym1 + col] && value > im2b[im2_ym1 + col + 1] && value > im2b[im2_y + col - 1] && value > im2b[im2_y + col] && value > im2b[im2_y + col + 1] && value > im2b[im2_yp1 + col - 1] && value > im2b[im2_yp1 + col] && value > im2b[im2_yp1 + col + 1] && /* im2 - 9 evaluations */ value > im0.bilinearInterpolation(us_x - 2.0f, us_y - 2.0f) && value > im0.bilinearInterpolation(us_x, us_y - 2.0f) && value > im0.bilinearInterpolation(us_x + 2.0f, us_y - 2.0f) && value > im0.bilinearInterpolation(us_x - 2.0f, us_y) && value > im0.bilinearInterpolation(us_x, us_y) && value > im0.bilinearInterpolation(us_x + 2.0f, us_y) && value > im0.bilinearInterpolation(us_x - 2.0f, us_y + 2.0f) && value > im0.bilinearInterpolation(us_x, us_y + 2.0f) && value > im0.bilinearInterpolation(us_x + 2.0f, us_y + 2.0f)) { extrema = true; } else if (value < im1b[im1_ym1 + col - 1] && value < im1b[im1_ym1 + col] && value < im1b[im1_ym1 + col + 1] && value < im1b[im1_y + col - 1] && value < im1b[im1_y + col + 1] && value < im1b[im1_yp1 + col - 1] && value < im1b[im1_yp1 + col] && value < im1b[im1_yp1 + col + 1] && /* im2 - 9 evaluations */ value < im2b[im2_ym1 + col - 1] && value < im2b[im2_ym1 + col] && value < im2b[im2_ym1 + col + 1] && value < im2b[im2_y + col - 1] && value < im2b[im2_y + col] && value < im2b[im2_y + col + 1] && value < im2b[im2_yp1 + col - 1] && value < im2b[im2_yp1 + col] && value < im2b[im2_yp1 + col + 1] && /* im2 - 9 evaluations */ value < im0.bilinearInterpolation(us_x - 2.0f, us_y - 2.0f) && value < im0.bilinearInterpolation(us_x, us_y - 2.0f) && value < im0.bilinearInterpolation(us_x + 2.0f, us_y - 2.0f) && value < im0.bilinearInterpolation(us_x - 2.0f, us_y) && value < im0.bilinearInterpolation(us_x, us_y) && value < im0.bilinearInterpolation(us_x + 2.0f, us_y) && value < im0.bilinearInterpolation(us_x - 2.0f, us_y + 2.0f) && value < im0.bilinearInterpolation(us_x, us_y + 2.0f) && value < im0.bilinearInterpolation(us_x + 2.0f, us_y + 2.0f)) { extrema = true; } if (extrema) { DogFeaturePoint fp = i_dog_fp.prePush(); if (fp == null) { prepush_warning(); break; } fp.octave = octave; fp.scale = scale; fp.score = value; fp.sigma = pyramid.effectiveSigma(octave, scale); double[] tmp = new double[2]; bilinear_upsample_point(tmp, col, row, octave); fp.x = tmp[0]; fp.y = tmp[1]; } } } } } return; }