コード例 #1
0
        public static void CompareStratMeansVar(string StratModel1, string StratModel2, out List <string> labels, out double[] meanDiff, out double[] varDiff, out double[] meanPvalues, out double[] varPvalues)
        {
            meanPvalues = null;
            varPvalues  = null;
            meanDiff    = null;
            varDiff     = null;
            labels      = null;
            dataPrepClusterKmean dpc1 = new dataPrepClusterKmean();

            dpc1.buildModel(StratModel1);
            KMeans km1 = (KMeans)dpc1.Model;
            dataPrepClusterKmean dpc2 = new dataPrepClusterKmean();

            dpc2.buildModel(StratModel2);
            List <string> labels2 = dpc2.Labels;
            KMeans        km2     = (KMeans)dpc2.Model;
            int           nPv1    = km1.Clusters.Count;
            int           nPv2    = km2.Clusters.Count;

            if (nPv1 != nPv2)
            {
                System.Windows.Forms.MessageBox.Show("Not the same number of strata! Models are not comparable!");
                return;
            }
            labels      = dpc1.Labels;
            meanPvalues = new double[nPv1];
            varPvalues  = new double[nPv2];
            meanDiff    = new double[nPv1];
            varDiff     = new double[nPv2];
            foreach (string l in labels)
            {
                int ind1 = labels.IndexOf(l);
                int ind2 = labels2.IndexOf(l);

                KMeansCluster kmC1   = km1.Clusters[ind1];
                KMeansCluster kmC2   = km2.Clusters[ind2];
                double[]      means1 = kmC1.Mean;
                double[]      means2 = kmC2.Mean;
                double[,] cov1 = kmC1.Covariance;
                double[,] cov2 = kmC2.Covariance;
                double[] meanDiffArr = new double[means1.Length];
                double[] varDiffArr  = new double[means1.Length];
                for (int i = 0; i < means1.Length; i++)
                {
                    meanDiffArr[i] = means1[i] - means2[i];
                    varDiffArr[i]  = cov1[i, i] - cov2[i, i];
                }
                meanDiff[ind1] = meanDiffArr.Average();
                varDiff[ind1]  = varDiffArr.Average();
                double m, v;
                PairedTTestPValues(means1, cov1, means2, cov2, out m, out v);
                meanPvalues[ind1] = m;
                varPvalues[ind1]  = v;
            }
        }
        public static void CompareStratMeansVar(string StratModel1, string StratModel2, out List<string> labels, out double[] meanDiff, out double[] varDiff, out double[] meanPvalues, out double[] varPvalues)
        {
            meanPvalues = null;
            varPvalues = null;
            meanDiff = null;
            varDiff = null;
            labels = null;
            dataPrepClusterKmean dpc1 = new dataPrepClusterKmean();
            dpc1.buildModel(StratModel1);
            KMeans km1 = (KMeans)dpc1.Model;
            dataPrepClusterKmean dpc2 = new dataPrepClusterKmean();
            dpc2.buildModel(StratModel2);
            List<string> labels2 = dpc2.Labels;
            KMeans km2 = (KMeans)dpc2.Model;
            int nPv1 = km1.Clusters.Count;
            int nPv2 = km2.Clusters.Count;
            if (nPv1 != nPv2)
            {
                System.Windows.Forms.MessageBox.Show("Not the same number of strata! Models are not comparable!");
                return;
            }
            labels = dpc1.Labels;
            meanPvalues = new double[nPv1];
            varPvalues = new double[nPv2];
            meanDiff = new double[nPv1];
            varDiff = new double[nPv2];
            foreach (string l in labels)
            {
                int ind1 = labels.IndexOf(l);
                int ind2 = labels2.IndexOf(l);

                KMeansCluster kmC1 = km1.Clusters[ind1];
                KMeansCluster kmC2 = km2.Clusters[ind2];
                double[] means1 = kmC1.Mean;
                double[] means2 = kmC2.Mean;
                double[,] cov1 = kmC1.Covariance;
                double[,] cov2 = kmC2.Covariance;
                double[] meanDiffArr = new double[means1.Length];
                double[] varDiffArr = new double[means1.Length];
                for (int i = 0; i < means1.Length; i++)
                {
                    meanDiffArr[i] = means1[i] - means2[i];
                    varDiffArr[i] = cov1[i, i] - cov2[i, i];
                }
                meanDiff[ind1] = meanDiffArr.Average();
                varDiff[ind1] = varDiffArr.Average();
                double m, v;
                PairedTTestPValues(means1, cov1, means2, cov2, out m, out v);
                meanPvalues[ind1] = m;
                varPvalues[ind1] = v;
            }
        }
 public static double[] clusterProportions(string clusterModelPath)
 {
     dataPrepClusterKmean cls = new dataPrepClusterKmean();
     cls.buildModel(clusterModelPath);
     int nClusters = ((Accord.MachineLearning.KMeans)cls.Model).Clusters.Count;
     double[] prop = new double[nClusters];
     for (int i = 0; i < nClusters; i++)
     {
         Accord.MachineLearning.KMeansCluster k = ((Accord.MachineLearning.KMeans)cls.Model).Clusters[i];
         prop[i] = k.Proportion;
     }
     return prop;
 }
コード例 #4
0
        public static double[] clusterProportions(string clusterModelPath)
        {
            dataPrepClusterKmean cls = new dataPrepClusterKmean();

            cls.buildModel(clusterModelPath);
            int nClusters = ((Accord.MachineLearning.KMeans)cls.Model).Clusters.Count;

            double[] prop = new double[nClusters];
            for (int i = 0; i < nClusters; i++)
            {
                Accord.MachineLearning.KMeansCluster k = ((Accord.MachineLearning.KMeans)cls.Model).Clusters[i];
                prop[i] = k.Proportion;
            }
            return(prop);
        }
コード例 #5
0
        public static int[] sampleSizeMaxCluster(string clusterModelPath, double proportionOfMean = 0.1, double alpha = 0.05)
        {
            dataPrepClusterKmean cls = new dataPrepClusterKmean();

            cls.buildModel(clusterModelPath);
            int nClusters = ((Accord.MachineLearning.KMeans)cls.Model).Clusters.Count;

            int[] maxN = new int[nClusters];
            for (int i = 0; i < nClusters; i++)
            {
                Accord.MachineLearning.KMeansCluster k = ((Accord.MachineLearning.KMeans)cls.Model).Clusters[i];
                int mx = sampleSizeMaxMean(k.Covariance, k.Mean, proportionOfMean, alpha)[0];
                maxN[i] = mx;
            }
            return(maxN);
        }
コード例 #6
0
        private static void fillCluserReport(string modelPath, Forms.RunningProcess.frmRunningProcessDialog rp, double proportion = 0.1, double alpha = 0.05)
        {
            dataPrepClusterKmean clus = new dataPrepClusterKmean();

            clus.buildModel(modelPath);
            List <string> lbl = clus.Labels;

            rp.addMessage("Samples by class (Cluster; number of samples)");
            rp.addMessage("-".PadRight(45, '-'));
            int[] samples = sampleSizeMaxCluster(modelPath, proportion, alpha);
            for (int i = 0; i < samples.Length; i++)
            {
                rp.addMessage("\t" + lbl[i] + "; " + samples[i].ToString());
            }
            rp.addMessage("-".PadRight(45, '-'));
            rp.addMessage("Total number of samples = " + samples.Sum().ToString());
        }
コード例 #7
0
        private void buildModel()
        {
            if (!checkTables())
            {
                //Console.WriteLine("CheckTables = false");
                return;
            }
            if (!getSampleRatios())
            {
                //Console.WriteLine("Sample Ratios = false");
                return;
            }
            pca     = new dataPrepPrincipleComponents(Sample1, Variables);
            cluster = new dataPrepClusterKmean(Sample1, Variables, numberOfBins);
            foreach (string s in cntDic.Keys)
            {
                buildSamples(s);

                double[] pValueArr = new double[Variables.Length];
                double[] sValueArr = new double[Variables.Length];
                //double[] s1Arr = sample1[0];
                //double[] s2Arr = sample2[0];
                //TwoSampleKolmogorovSmirnovTest test = new TwoSampleKolmogorovSmirnovTest(s1Arr, s2Arr, TwoSampleKolmogorovSmirnovTestHypothesis.SamplesDistributionsAreUnequal);
                //getCdfProp(s, 0, test);
                //pValue = test.PValue;
                //sValue = test.Statistic;
                for (int i = 0; i < Variables.Length; i++)
                {
                    double[] s1Arr = sample1[i];
                    double[] s2Arr = sample2[i];
                    TwoSampleKolmogorovSmirnovTest test = new TwoSampleKolmogorovSmirnovTest(s1Arr, s2Arr, TwoSampleKolmogorovSmirnovTestHypothesis.SamplesDistributionsAreUnequal);
                    //Console.WriteLine(test.Significant.ToString());
                    getCdfProp(s, i, test);
                    double pValueS = test.PValue;
                    double sValueS = test.Statistic;
                    pValueArr[i] = pValueS;
                    sValueArr[i] = sValueS;
                }
                pDic.Add(s, pValueArr);
                sDic.Add(s, sValueArr);
            }
        }
コード例 #8
0
 private void buildModel(string mdlPath)
 {
     using (System.IO.StreamReader sr = new System.IO.StreamReader(mdlPath))
     {
         dataPrepBase.modelTypes mType = (dataPrepBase.modelTypes)Enum.Parse(typeof(dataPrepBase.modelTypes), sr.ReadLine());
         if (mType != dataPrepBase.modelTypes.KS)
         {
             System.Windows.Forms.MessageBox.Show("Not a KS Model!!", "Error", System.Windows.Forms.MessageBoxButtons.OK, System.Windows.Forms.MessageBoxIcon.Error);
             return;
         }
         Variables   = sr.ReadLine().Split(new char[] { ',' });
         StrataField = sr.ReadLine();
         Oridinate   = System.Convert.ToBoolean(sr.ReadLine());
         string[] lbl   = sr.ReadLine().Split(new char[] { ',' });
         string[] pArr  = sr.ReadLine().Split(new char[] { ',' });
         string[] sArr  = sr.ReadLine().Split(new char[] { ',' });
         string[] cArr1 = sr.ReadLine().Split(new char[] { ',' });
         string[] cArr2 = sr.ReadLine().Split(new char[] { ',' });
         for (int i = 0; i < lbl.Length; i++)
         {
             string   l  = lbl[i];
             double[] p  = (from string str in pArr[i].Split(new char[] { ';' }) select System.Convert.ToDouble(str)).ToArray();
             double[] s  = (from string str in sArr[i].Split(new char[] { ';' }) select System.Convert.ToDouble(str)).ToArray();
             int      c1 = System.Convert.ToInt32(cArr1[i]);
             int      c2 = System.Convert.ToInt32(cArr2[i]);
             pDic.Add(l, p);
             sDic.Add(l, s);
             cntDic.Add(l, new int[] { c1, c2 });
         }
         double[][] minmax1, minmax2, bp1, bp2;
         for (int i = 0; i < lbl.Length; i++)
         {
             string   l    = lbl[i];
             double[] min1 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             double[] max1 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             double[] min2 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             double[] max2 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             minmax1    = new double[2][];
             minmax1[0] = min1;
             minmax1[1] = max1;
             minMaxDic1.Add(l, minmax1);
             minmax2    = new double[2][];
             minmax2[0] = min2;
             minmax2[1] = max2;
             minMaxDic2.Add(l, minmax2);
             bp1 = new double[Variables.Length][];
             bp2 = new double[Variables.Length][];
             for (int j = 0; j < Variables.Length; j++)
             {
                 bp1[j] = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
                 bp2[j] = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             }
             binPropDic1.Add(l, bp1);
             binPropDic2.Add(l, bp2);
             int[] clusCnt = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToInt32(s)).ToArray();
             clusCountDic.Add(l, clusCnt);
             int[] clusSampCnt = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToInt32(s)).ToArray();
             clusSampleCountDic.Add(l, clusSampCnt);
         }
         pca = new dataPrepPrincipleComponents();
         string pcPath = System.IO.Path.GetDirectoryName(mdlPath) + "\\" + System.IO.Path.GetFileNameWithoutExtension(mdlPath) + "_pca.mdl";
         pca.buildModel(pcPath);
         cluster = new dataPrepClusterKmean();
         string clusterPath = System.IO.Path.GetDirectoryName(mdlPath) + "\\" + System.IO.Path.GetFileNameWithoutExtension(mdlPath) + "_cluster.mdl";
         cluster.buildModel(clusterPath);
         numberOfBins = cluster.Classes;
         sr.Close();
     }
 }
        private void createClusterModel(string[] paramArr)
        {
            Statistics.dataPrepClusterBase dpC = null;
            esriUtil.Statistics.clusterType cType = Statistics.clusterType.KMEANS;
            if(paramArr.Length<6)
            {
                IRaster rs = rsUtil.createRaster(getRaster(paramArr[1]));
                int nCls = System.Convert.ToInt32(paramArr[2]);
                cType = (esriUtil.Statistics.clusterType)Enum.Parse(typeof(esriUtil.Statistics.clusterType), paramArr[3]);
                switch (cType)
                {
                    case esriUtil.Statistics.clusterType.KMEANS:
                        dpC = (Statistics.dataPrepClusterBase)(new Statistics.dataPrepClusterKmean(rs, nCls));
                        break;
                    case esriUtil.Statistics.clusterType.BINARY:
                        dpC = (Statistics.dataPrepClusterBase)(new Statistics.dataPrepClusterBinary(rs, nCls));
                        break;
                    case esriUtil.Statistics.clusterType.GAUSSIANMIXTURE:
                        dpC = (Statistics.dataPrepClusterBase)(new Statistics.dataPrepClusterGaussian(rs, nCls));
                        break;
                    default:
                        break;
                }

            }
            else
            {
                ITable tbl = getTable(paramArr[1]);
                string[] flds = paramArr[2].Split(new char[]{','});
                int nCls = System.Convert.ToInt32(paramArr[3]);
                cType = (esriUtil.Statistics.clusterType)Enum.Parse(typeof(esriUtil.Statistics.clusterType), paramArr[4]);
                dpC = new Statistics.dataPrepClusterKmean(tbl,flds,nCls);
            }
            dpC.writeModel(paramArr[paramArr.Length - 1]);
        }
        private static void fillCluserReport(string modelPath, Forms.RunningProcess.frmRunningProcessDialog rp, double proportion = 0.1, double alpha = 0.05)
        {
            dataPrepClusterKmean clus = new dataPrepClusterKmean();
            clus.buildModel(modelPath);
            List<string> lbl = clus.Labels;
            rp.addMessage("Samples by class (Cluster; number of samples)");
            rp.addMessage("-".PadRight(45, '-'));
            int[] samples = sampleSizeMaxCluster(modelPath, proportion, alpha);
            for (int i = 0; i < samples.Length; i++)
            {
                rp.addMessage("\t"+lbl[i] + "; " + samples[i].ToString());

            }
            rp.addMessage("-".PadRight(45, '-'));
            rp.addMessage("Total number of samples = " + samples.Sum().ToString());
        }
 public static int[] sampleSizeMaxCluster(string clusterModelPath, double proportionOfMean = 0.1, double alpha = 0.05)
 {
     dataPrepClusterKmean cls = new dataPrepClusterKmean();
     cls.buildModel(clusterModelPath);
     int nClusters = ((Accord.MachineLearning.KMeans)cls.Model).Clusters.Count;
     int[] maxN = new int[nClusters];
     for (int i = 0; i < nClusters; i++)
     {
         Accord.MachineLearning.KMeansCluster k = ((Accord.MachineLearning.KMeans)cls.Model).Clusters[i];
         int mx = sampleSizeMaxMean(k.Covariance, k.Mean, proportionOfMean, alpha)[0];
         maxN[i] = mx;
     }
     return maxN;
 }
        /// <summary>
        /// creates a new field called sample and populates yes or no depending on whether that feature should be sampled based on a previously ran cluster analysis
        /// </summary>
        /// <param name="inputTable"></param>
        /// <param name="clusterModelPath"></param>
        /// <param name="proportionOfMean"></param>
        /// <param name="alpha"></param>
        public void selectClusterFeaturesToSample(ITable inputTable, string clusterModelPath, string clusterFieldName="Cluster", double proportionOfMean=0.1, double alpha=0.05, bool weightsEqual=false)
        {
            IObjectClassInfo2 objInfo2 = (IObjectClassInfo2)inputTable;
            if (!objInfo2.CanBypassEditSession())
            {
                System.Windows.Forms.MessageBox.Show("Input Table participates in a composite relationship. Please export this table as a new table and try again!");
                return;
            }
            esriUtil.Statistics.dataPrepClusterKmean dpC = new Statistics.dataPrepClusterKmean();
            dpC.buildModel(clusterModelPath);
            List<string> labels = dpC.Labels;
            HashSet<string> unqVls = geoUtil.getUniqueValues(inputTable, clusterFieldName);
            System.Random rd = new Random();
            int[] samplesPerCluster = esriUtil.Statistics.dataPrepSampleSize.sampleSizeMaxCluster(clusterModelPath, proportionOfMean, alpha);
            double[] propPerCluster = esriUtil.Statistics.dataPrepSampleSize.clusterProportions(clusterModelPath);
            double[] weightsPerCluster = new double[propPerCluster.Length];
            double sSamp = System.Convert.ToDouble(samplesPerCluster.Sum());
            for (int i = 0; i < weightsPerCluster.Length; i++)
            {
                weightsPerCluster[i] = propPerCluster[i] / (samplesPerCluster[i] / sSamp);
            }
            if (weightsEqual)
            {
                double minProp = weightsPerCluster.Min();
                for (int i = 0; i < samplesPerCluster.Length; i++)
                {
                    samplesPerCluster[i] = System.Convert.ToInt32(samplesPerCluster[i] * (weightsPerCluster[i] / minProp));
                    weightsPerCluster[i] = 1;
                }
            }
            int[] tsPerCluster = new int[propPerCluster.Length];
            double[] randomRatioPerClust = new double[propPerCluster.Length];
            if (samplesPerCluster.Length != unqVls.Count)
            {
                System.Windows.Forms.MessageBox.Show("Unique Values in cluster field do not match the number of cluster models!");
                return;
            }
            string sampleFldName = geoUtil.createField(inputTable, "sample", esriFieldType.esriFieldTypeSmallInteger,false);
            string weightFldName = geoUtil.createField(inputTable, "weight", esriFieldType.esriFieldTypeDouble,false);
            IQueryFilter qf0 = new QueryFilterClass();
            qf0.SubFields = clusterFieldName;
            string h = "";
            IField fld = inputTable.Fields.get_Field(inputTable.FindField(clusterFieldName));
            if (fld.Type == esriFieldType.esriFieldTypeString) h = "'";
            for (int i = 0; i < samplesPerCluster.Length; i++)
            {

                qf0.WhereClause = clusterFieldName + " = " + h+labels[i]+h;
                int tCnt = inputTable.RowCount(qf0);
                tsPerCluster[i] = tCnt;
                randomRatioPerClust[i] = System.Convert.ToDouble(samplesPerCluster[i]) / tCnt;
            }
            IQueryFilter qf = new QueryFilterClass();
            qf.SubFields = clusterFieldName + "," + sampleFldName + "," + weightFldName;
            IWorkspace wks = ((IDataset)inputTable).Workspace;
            IWorkspaceEdit wksE = (IWorkspaceEdit)wks;
            if (wksE.IsBeingEdited())
            {
                wksE.StopEditing(true);
            }
            try
            {
                ICursor cur = inputTable.Update(qf, false);
                int sIndex = cur.FindField(sampleFldName);
                int cIndex = cur.FindField(clusterFieldName);
                int wIndex = cur.FindField(weightFldName);
                IRow rw = cur.NextRow();
                while (rw != null)
                {
                    string clustStr = rw.get_Value(cIndex).ToString();
                    int clust = labels.IndexOf(clustStr);
                    double w = weightsPerCluster[clust];
                    double rNum = rd.NextDouble();
                    int ss = 0;
                    double r = randomRatioPerClust[clust];
                    if (rNum < r)
                    {
                        ss = 1;
                    }
                    rw.set_Value(sIndex, ss);
                    rw.set_Value(wIndex, w);
                    cur.UpdateRow(rw);
                    rw = cur.NextRow();
                }
                System.Runtime.InteropServices.Marshal.ReleaseComObject(cur);
            }
            catch(Exception e)
            {
                System.Windows.Forms.MessageBox.Show(e.ToString());
            }
        }
 private void buildModel(string mdlPath)
 {
     using (System.IO.StreamReader sr = new System.IO.StreamReader(mdlPath))
     {
         dataPrepBase.modelTypes mType = (dataPrepBase.modelTypes)Enum.Parse(typeof(dataPrepBase.modelTypes), sr.ReadLine());
         if (mType != dataPrepBase.modelTypes.KS)
         {
             System.Windows.Forms.MessageBox.Show("Not a KS Model!!", "Error", System.Windows.Forms.MessageBoxButtons.OK, System.Windows.Forms.MessageBoxIcon.Error);
             return;
         }
         Variables = sr.ReadLine().Split(new char[] { ',' });
         StrataField = sr.ReadLine();
         Oridinate = System.Convert.ToBoolean(sr.ReadLine());
         string[] lbl = sr.ReadLine().Split(new char[] { ',' });
         string[] pArr = sr.ReadLine().Split(new char[] { ',' });
         string[] sArr = sr.ReadLine().Split(new char[] {','});
         string[] cArr1 = sr.ReadLine().Split(new char[] { ',' });
         string[] cArr2 = sr.ReadLine().Split(new char[] { ',' });
         for (int i = 0; i < lbl.Length; i++)
         {
             string l = lbl[i];
             double[] p = (from string str in pArr[i].Split(new char[]{';'}) select System.Convert.ToDouble(str)).ToArray();
             double[] s = (from string str in sArr[i].Split(new char[] { ';' }) select System.Convert.ToDouble(str)).ToArray();
             int c1 = System.Convert.ToInt32(cArr1[i]);
             int c2 = System.Convert.ToInt32(cArr2[i]);
             pDic.Add(l, p);
             sDic.Add(l, s);
             cntDic.Add(l, new int[]{c1,c2});
         }
         double[][] minmax1, minmax2, bp1, bp2;
         for (int i = 0; i < lbl.Length; i++)
         {
             string l = lbl[i];
             double[] min1 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             double[] max1 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             double[] min2 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             double[] max2 = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             minmax1 = new double[2][];
             minmax1[0] = min1;
             minmax1[1] = max1;
             minMaxDic1.Add(l, minmax1);
             minmax2 = new double[2][];
             minmax2[0] = min2;
             minmax2[1] = max2;
             minMaxDic2.Add(l,minmax2);
             bp1 = new double[Variables.Length][];
             bp2 = new double[Variables.Length][];
             for (int j = 0; j < Variables.Length; j++)
             {
                 bp1[j] = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
                 bp2[j] = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToDouble(s)).ToArray();
             }
             binPropDic1.Add(l, bp1);
             binPropDic2.Add(l, bp2);
             int[] clusCnt = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToInt32(s)).ToArray();
             clusCountDic.Add(l, clusCnt);
             int[] clusSampCnt = (from string s in sr.ReadLine().Split(new char[] { ',' }) select System.Convert.ToInt32(s)).ToArray();
             clusSampleCountDic.Add(l, clusSampCnt);
         }
         pca = new dataPrepPrincipleComponents();
         string pcPath = System.IO.Path.GetDirectoryName(mdlPath) + "\\" + System.IO.Path.GetFileNameWithoutExtension(mdlPath) + "_pca.mdl";
         pca.buildModel(pcPath);
         cluster = new dataPrepClusterKmean();
         string clusterPath = System.IO.Path.GetDirectoryName(mdlPath) + "\\" + System.IO.Path.GetFileNameWithoutExtension(mdlPath) + "_cluster.mdl";
         cluster.buildModel(clusterPath);
         numberOfBins = cluster.Classes;
         sr.Close();
     }
 }
        private void buildModel()
        {
            if (!checkTables())
            {
                //Console.WriteLine("CheckTables = false");
                return;
            }
            if (!getSampleRatios())
            {
                //Console.WriteLine("Sample Ratios = false");
                return;
            }
            pca = new dataPrepPrincipleComponents(Sample1, Variables);
            cluster = new dataPrepClusterKmean(Sample1, Variables, numberOfBins);
            foreach(string s in cntDic.Keys)
            {
                buildSamples(s);

                double[] pValueArr = new double[Variables.Length];
                double[] sValueArr = new double[Variables.Length];
                //double[] s1Arr = sample1[0];
                //double[] s2Arr = sample2[0];
                //TwoSampleKolmogorovSmirnovTest test = new TwoSampleKolmogorovSmirnovTest(s1Arr, s2Arr, TwoSampleKolmogorovSmirnovTestHypothesis.SamplesDistributionsAreUnequal);
                //getCdfProp(s, 0, test);
                //pValue = test.PValue;
                //sValue = test.Statistic;
                for (int i = 0; i < Variables.Length; i++)
                {
                    double[] s1Arr = sample1[i];
                    double[] s2Arr = sample2[i];
                    TwoSampleKolmogorovSmirnovTest test = new TwoSampleKolmogorovSmirnovTest(s1Arr, s2Arr, TwoSampleKolmogorovSmirnovTestHypothesis.SamplesDistributionsAreUnequal);
                    //Console.WriteLine(test.Significant.ToString());
                    getCdfProp(s, i, test);
                    double pValueS = test.PValue;
                    double sValueS = test.Statistic;
                    pValueArr[i] = pValueS;
                    sValueArr[i] = sValueS;
                }
                pDic.Add(s, pValueArr);
                sDic.Add(s, sValueArr);
            }
        }