}// end constructor /* * La méthode étant internal, elle peut être invoquée d'un programme externe à la librairie. * La seule méthode qui peut invoquer Run, c'est la méthode Compute de Model qui ne le fera que si le modèle est * jugé valide. */ internal override void Run() { SGNFnAParam localA = null; GenObject oTV = null; GenObject oMu = null; GenObject oSigma = null; GenObject oME = null; YGen genY = YGen.EmptyInstance; TrueValuesGen genTV = null; double[] burninMu; double[] burninSigma; double[] burninCV = null; double[] sampleMu; double[] sampleSigma; double[] sampleCV = null; double mu; double sigma; int iter = -1, savedIter; double muCondMean; double yBar; double muCondSD; double[] pLim = new double[2]; double p; double[] muLim = new double[] { this.MuLower, this.MuUpper }; double logSigmaSD; try { logSigmaSD = 1 / Math.Sqrt(this.LogSigmaPrec); if (ME.Any) { if (ME.ThroughCV) { if (OutcomeIsLogNormallyDistributed) { oTV = new TrueValue_CV_LogN_GenObject(); } else { oTV = new TrueValue_CV_Norm_GenObject(); } } else { //oTV = new TrueValue_SD_GenObject(); } } //# modif_0.12 int combinedN = this.Data.N + (this.PastData.Defined ? PastData.N : 0); if (ME.ThroughCV && !OutcomeIsLogNormallyDistributed) { oMu = new MuTruncatedData_GenObject(combinedN); //# modif_0.12 oSigma = GenObject.GetSigmaTruncatedDataLNormGenObject(combinedN, this.LogSigmaMu, logSigmaSD); //# modif_0.12 } else { oSigma = GenObject.GetSigmaGenObject(combinedN, this.LogSigmaMu, logSigmaSD); //# modif_0.12 } localA = oSigma.A.Clone(); if (ME.Any && !ME.Known) { oME = GenObject.GetMeGenObject(this.ME, this.OutcomeIsLogNormallyDistributed, this.Data.N); } int nIterations = NBurnin + NIter * NThin; //les tableaux pour les chaines sampleMu = Result.Chains.GetChain("muSample"); sampleSigma = Result.Chains.GetChain("sdSample"); burninMu = Result.Chains.GetChain("muBurnin"); burninSigma = Result.Chains.GetChain("sdBurnin"); if (ME.ThroughCV) { sampleCV = Result.Chains.GetChain("cvSample"); burninCV = Result.Chains.GetChain("cvBurnin"); } bool inestimableLowerLimit = false; //Initial values for mu and sigma mu = InitMu; sigma = InitSigma; savedIter = 0; // pour les échantillons if (this.Data.AnyCensored) { genY = YGen.Inits(this.Data, mu, sigma, meThroughCV: this.ME.ThroughCV, logNormalDistrn: OutcomeIsLogNormallyDistributed); } if (ME.Any) { ME.Parm = ME.InitialValue; } //Boucle principale for (iter = 0; iter < nIterations; iter++) { if (ME.Any) { genTV = TrueValuesGen.GetInstance(genY, this.Data, mu, sigma, this.ME, logNormalDistrn: OutcomeIsLogNormallyDistributed, o: oTV); } if (this.Data.AnyCensored) { //y.gen(true.values, data, sigma, me, outcome.is.logNormally.distributed, mu=mu) //On ne tient pas compte de true.values, ni de me ... genY = YGen.GetInstance(this.ME, genTV, this.Data, mu, sigma, OutcomeIsLogNormallyDistributed); } OutLogoutMoments moments = OutLogoutMoments.Get(this.ME.Any, this.OutcomeIsLogNormallyDistributed, this.Data, genY, genTV); double sigmaBeta = (moments.Sum2 - 2 * mu * moments.Sum + this.Data.N * mu * mu) / 2.0; if (PastData.Defined) { sigmaBeta = sigmaBeta + PastData.N / 2.0 * Math.Pow(PastData.Mean - mu, 2) + PastData.NS2 / 2.0; } double[] start = new double[0]; if (this.ME.ThroughCV && !OutcomeIsLogNormallyDistributed) { //ici // A <- c(o.sigma$A, list(b=sigma.beta, mu=mu)) localA = oSigma.A.Clone(); localA.B = sigmaBeta; localA.Mu = mu; start = Tools.Combine(sigma); inestimableLowerLimit = false; } else { localA.B = sigmaBeta; start = oSigma.Start(localA); inestimableLowerLimit = true; } Icdf icdf = new Icdf(oSigma, localA, Tools.Combine(0, double.PositiveInfinity)); sigma = icdf.Bidon(start, inestimableLowerLimit); yBar = moments.Sum / this.Data.N; muCondMean = this.PastData.Defined ? (moments.Sum + PastData.N * PastData.Mean) / combinedN : yBar; // # new_0.12 if (this.ME.ThroughCV && !this.OutcomeIsLogNormallyDistributed) { mu = MuTruncatedGen.GetInstance(oMu, muLim, muCondMean, sigma).Mu; } else { muCondSD = sigma / Math.Sqrt(combinedN); pLim = NormalDistribution.PNorm(muLim.Substract(muCondMean).Divide(muCondSD)); p = UniformDistribution.RUnif(1, pLim[0], pLim[1])[0]; mu = NormalDistribution.QNorm(p, mu: muCondMean, sigma: muCondSD); } //# Sample Measurement Error from its posterior density if (this.ME.Any && !this.ME.Known) { this.ME.Parm = MEParmGen.GetInstance(oME, this.ME, this.Data, genY, genTV).Parm; } if (iter < NBurnin) { if (MonitorBurnin) { burninMu[iter] = mu; burninSigma[iter] = sigma; if (this.ME.Any && !this.ME.Known) { burninCV[iter] = ME.Parm; } } } else if ((iter - NBurnin) % NThin == 0) { sampleMu[savedIter] = mu; sampleSigma[savedIter] = sigma; if (this.ME.Any && !this.ME.Known) { sampleCV[savedIter] = ME.Parm; } savedIter++; } }// for( int iter = 1 ... } catch (Exception ex) { this.Result.Messages.AddError(WEException.GetStandardMessage(ex, iter, Result.PRNGSeed), this.ClassName); return; } } //end Run
}// end constructor internal override void Run() { YGen genY = YGen.EmptyInstance; // Pourra probablement prendre plusieurs formes. TrueValuesGen genTV = null; GenObject oSigma = EmptyGenObject.Instance; GenObject oMu = EmptyGenObject.Instance; GenObject oME = null; GenObject oTV = null; double[] burninMu; double[] burninSigma; double[] burninCV = null; double[] sampleMu; double[] sampleSigma; double[] sampleCV = null; double mu; double sigma; int iter = -1, savedIter; double muCondMean; double muCondSD; try { //# Prepare dens.gen.icdf objects if (ME.Any) { if (ME.ThroughCV) { if (OutcomeIsLogNormallyDistributed) { oTV = new TrueValue_CV_LogN_GenObject(); } else { oTV = new TrueValue_CV_Norm_GenObject(); } } else { //oTV = new TrueValue_SD_GenObject(); } } if (ME.ThroughCV && !OutcomeIsLogNormallyDistributed) { oMu = new MuTruncatedData_GenObject(this.Data.N); //# modif_0.12 oSigma = GenObject.GetSigmaTruncatedDataGenObject(this.Data.N); //# modif_0.12 } else { oSigma = EmptyGenObject.Instance; } if (ME.Any && !ME.Known) { oME = GenObject.GetMeGenObject(this.ME, this.OutcomeIsLogNormallyDistributed, this.Data.N); } int nIterations = NBurnin + NIter * NThin; //les tableaux pour les chaines sampleMu = Result.Chains.GetChain("muSample"); sampleSigma = Result.Chains.GetChain("sdSample"); burninMu = Result.Chains.GetChain("muBurnin"); burninSigma = Result.Chains.GetChain("sdBurnin"); if (ME.ThroughCV) { sampleCV = Result.Chains.GetChain("cvSample"); burninCV = Result.Chains.GetChain("cvBurnin"); } //Initial values for mu and sigma mu = this.InitMu; sigma = this.InitSD; //# Initialize measured values for subjects with censored values [modif_0.10] if (this.Data.AnyCensored) { genY = YGen.Inits(data: this.Data, mu: mu, sigma: sigma, meThroughCV: true, logNormalDistrn: OutcomeIsLogNormallyDistributed); } if (ME.Any) { ME.Parm = ME.InitialValue; } //# Start MCMC savedIter = 0; // pour les échantillons for (iter = 0; iter < nIterations; iter++) { //# Sample true values (in presence of measurement error) [new_0.10] if (ME.Any) { genTV = TrueValuesGen.GetInstance(genY, this.Data, mu, sigma, this.ME, OutcomeIsLogNormallyDistributed, o: oTV); } //# Sample y values for censored observations if (this.Data.AnyCensored) { //y.gen(true.values, data, sigma, me, outcome.is.logNormally.distributed, mu=mu) //On ne tient pas compte de true.values, ni de me ... genY = YGen.GetInstance(this.ME, genTV, this.Data, mu, sigma, OutcomeIsLogNormallyDistributed); } //# Compute data points sum and square sum OutLogoutMoments moments = OutLogoutMoments.Get(this.ME.Any, this.OutcomeIsLogNormallyDistributed, this.Data, genY, genTV); //# Sample from f(sigma | mu) //# modif_0.10 double sigmaBeta = (moments.Sum2 - 2 * mu * moments.Sum + this.Data.N * mu * mu) / 2.0; if (sigmaBeta < 1e-6) { sigmaBeta = 0; // # protection against numeric imprecision } if (this.ME.ThroughCV && !OutcomeIsLogNormallyDistributed) { sigma = SigmaTruncatedDataGen.GetInstance(oSigma, SDRange, sigmaBeta, mu, sigma).Sigma; } else { sigma = WebExpoFunctions3.SqrtInvertedGammaGen(Data.N, sigmaBeta, this.SDRange, oSigma); } muCondMean = moments.Sum / this.Data.N; if (this.ME.ThroughCV && !this.OutcomeIsLogNormallyDistributed) { mu = MuTruncatedGen.GetInstance(oMu, Tools.Combine(MuLower, MuUpper), muCondMean, sigma).Mu; } else { muCondSD = sigma / Math.Sqrt(this.Data.N); mu = RNorm4CensoredMeasures.RNormCensored(muCondMean, muCondSD, lower: this.MuLower, upper: this.MuUpper); } //# Sample Measurement Error from its posterior density if (this.ME.Any && !ME.Known) { this.ME.Parm = MEParmGen.GetInstance(oME, this.ME, this.Data, genY, genTV).Parm; } if (iter < NBurnin) { if (MonitorBurnin) { burninMu[iter] = mu; burninSigma[iter] = sigma; if (this.ME.Any && !this.ME.Known) { burninCV[iter] = ME.Parm; } } } else if ((iter - NBurnin) % NThin == 0) { sampleMu[savedIter] = mu; sampleSigma[savedIter] = sigma; if (this.ME.Any && !this.ME.Known) { sampleCV[savedIter] = ME.Parm; } savedIter++; } }// for( int iter = 1 ... } catch (Exception ex) { this.Result.Messages.AddError(WEException.GetStandardMessage(ex, iter, Result.PRNGSeed), this.ClassName); return; } }//compute