public VectorR GaussSeidel(MatrixR A, VectorR b, int MaxIterations, double tolerance) { int n = b.GetSize(); VectorR x = new VectorR(n); for (int nIteration = 0; nIteration < MaxIterations; nIteration++) { VectorR xOld = x.Clone(); for (int i = 0; i < n; i++) { double db = b[i]; double da = A[i, i]; if (Math.Abs(da) < epsilon) { throw new ArgumentException("Diagonal element is too small!"); } for (int j = 0; j < i; j++) { db -= A[i, j] * x[j]; } for (int j = i + 1; j < n; j++) { db -= A[i, j] * xOld[j]; } x[i] = db / da; } VectorR dx = x - xOld; if (dx.GetNorm() < tolerance) { //MessageBox.Show(nIteration.ToString()); return(x); } } return(x); }
private double LUSubstitute(MatrixR m, VectorR v) // m = A, v = b { int n = v.GetSize(); double det = 1.0; for (int i = 0; i < n; i++) // Ly = b { double d = v[i]; for (int j = 0; j < i; j++) { d -= m[i, j] * v[j]; } double dd = m[i, i]; if (Math.Abs(d) < epsilon) { throw new ArgumentException("Diagonal element is too small!"); } d /= dd; v[i] = d; //v = y det *= m[i, i]; } for (int i = n - 1; i >= 0; i--) { double d = v[i]; for (int j = i + 1; j < n; j++) { d -= m[i, j] * v[j]; } v[i] = d; // v=x } return(det); }
public static VectorR Transform(VectorR v, MatrixR m) { VectorR result = new VectorR(v.GetSize()); if (!m.IsSquared()) { throw new ArgumentOutOfRangeException( "Dimension", m.GetRows(), "The matrix must be squared!"); } if (m.GetRows() != v.GetSize()) { throw new ArgumentOutOfRangeException( "Size", v.GetSize(), "The size of the vector must be equal" + "to the number of rows of the matrix!"); } for (int i = 0; i < m.GetRows(); i++) { result[i] = 0.0; for (int j = 0; j < m.GetCols(); j++) { result[i] += v[j] * m[j, i]; } } return(result); }
public static void Power(MatrixR A, double tolerance, out VectorR x, out double lambda) { int n = A.GetCols(); x = new VectorR(n); lambda = 0.0; double delta = 0.0; Random random = new Random(); for (int i = 0; i < n; i++) { x[i] = random.NextDouble(); } do { VectorR temp = x; x = MatrixR.Transform(A, x); x.Normalize(); if (VectorR.DotProduct(temp, x) < 0) { x = -x; } VectorR dx = temp - x; delta = dx.GetNorm(); }while (delta > tolerance); lambda = VectorR.DotProduct(x, MatrixR.Transform(A, x)); }
public static void Inverse(MatrixR A, double s, double tolerance, out VectorR x, out double lambda) { int n = A.GetCols(); x = new VectorR(n); lambda = 0.0; double delta = 0.0; MatrixR identity = new MatrixR(n, n); A = A - s * (identity.Identity()); LinearSystem ls = new LinearSystem(); A = ls.LUInverse(A); Random random = new Random(); for (int i = 0; i < n; i++) { x[i] = random.NextDouble(); } do { VectorR temp = x; x = MatrixR.Transform(A, x); x.Normalize(); if (VectorR.DotProduct(temp, x) < 0) { x = -x; } VectorR dx = temp - x; delta = dx.GetNorm(); }while (delta > tolerance); lambda = s + 1.0 / (VectorR.DotProduct(x, MatrixR.Transform(A, x))); }
public static void Rayleigh(MatrixR A, double tolerance, out VectorR x, out double lambda) { int n = A.GetCols(); double delta = 0.0; Random random = new Random(); x = new VectorR(n); for (int i = 0; i < n; i++) { x[i] = random.NextDouble(); } x.Normalize(); VectorR x0 = MatrixR.Transform(A, x); x0.Normalize(); lambda = VectorR.DotProduct(x, x0); double temp = lambda; do { temp = lambda; x0 = x; x0.Normalize(); x = MatrixR.Transform(A, x0); lambda = VectorR.DotProduct(x, x0); delta = Math.Abs((temp - lambda) / lambda); }while (delta > tolerance); x.Normalize(); }
public MatrixR GetTranspose() { MatrixR m = this; m.Transpose(); return(m); }
public static void RayleighQuotient(MatrixR A, double tolerance, int flag, out VectorR x, out double lambda) { int n = A.GetCols(); double delta = 0.0; Random random = new Random(); x = new VectorR(n); if (flag != 2) { for (int i = 0; i < n; i++) { x[i] = random.NextDouble(); } x.Normalize(); lambda = VectorR.DotProduct(x, MatrixR.Transform(A, x)); } else { lambda = 0.0; Rayleigh(A, 1e-2, out x, out lambda); } double temp = lambda; MatrixR identity = new MatrixR(n, n); LinearSystem ls = new LinearSystem(); do { temp = lambda; double d = ls.LUCrout(A - lambda * identity.Identity(), x); x.Normalize(); lambda = VectorR.DotProduct(x, MatrixR.Transform(A, x)); delta = Math.Abs((temp - lambda) / lambda); }while (delta > tolerance); }
public static MatrixR Minor(MatrixR m, int row, int col) { MatrixR mm = new MatrixR(m.GetRows() - 1, m.GetCols() - 1); int ii = 0, jj = 0; for (int i = 0; i < m.GetRows(); i++) { if (i == row) { continue; } jj = 0; for (int j = 0; j < m.GetCols(); j++) { if (j == col) { continue; } mm[ii, jj] = m[i, j]; jj++; } ii++; } return(mm); }
private void LUDecompose(MatrixR m) { int n = m.GetRows(); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { double d = m[i, j]; for (int k = 0; k < Math.Min(i, j); k++) { d -= m[i, k] * m[k, j]; } if (j > i) { double dd = m[i, i]; if (Math.Abs(d) < epsilon) { throw new ArgumentException("Diagonal element is too small!"); } d /= dd; } m[i, j] = d; } } }
public MatrixR Clone() { // returns a deep copy of the matrix MatrixR m = new MatrixR(matrix); m.matrix = (double[, ])matrix.Clone(); return(m); }
private static void Transformation(MatrixR A, MatrixR R, int I, int J, out MatrixR A1, out MatrixR R1) { int n = A.GetCols(); double t = 0.0; double da = A[J, J] - A[I, I]; if (Math.Abs(A[I, J]) < Math.Abs(da) * 1e-30) { t = A[I, J] / da; } else { double phi = da / (2.0 * A[I, J]); t = 1.0 / (Math.Abs(phi) + Math.Sqrt(1.0 + phi * phi)); if (phi < 0.0) { t = -t; } } double c = 1.0 / Math.Sqrt(Math.Abs(t * t + 1.0)); double s = t * c; double tau = s / (1.0 + c); double temp = A[I, J]; A[I, J] = 0.0; A[I, I] -= t * temp; A[J, J] += t * temp; for (int i = 0; i < I; i++) { temp = A[i, I]; A[i, I] = temp - s * (A[i, J] + tau * temp); A[i, J] += s * (temp - tau * A[i, J]); } for (int i = I + 1; i < J; i++) { temp = A[I, i]; A[I, i] = temp - s * (A[i, J] + tau * A[I, i]); A[i, J] += s * (temp - tau * A[i, J]); } for (int i = J + 1; i < n; i++) { temp = A[I, i]; A[I, i] = temp - s * (A[J, i] + tau * temp); A[J, i] += s * (temp - tau * A[J, i]); } for (int i = 0; i < n; i++) { temp = R[i, I]; R[i, I] = temp - s * (R[i, J] + tau * R[i, I]); R[i, J] += s * (temp - tau * R[i, J]); } A1 = A; R1 = R; }
public static MatrixR Inverse(MatrixR m) { if (Determinant(m) == 0) { throw new DivideByZeroException( "Cannot inverse a matrix with a zero determinant!"); } return(Adjoint(m) / Determinant(m)); }
public static bool CompareDimension(MatrixR m1, MatrixR m2) { if (m1.GetRows() == m2.GetRows() && m1.GetCols() == m2.GetCols()) { return(true); } else { return(false); } }
// Eigenvalues and eigenvectors of a tridiagonal matrix: public static void SetAlphaBeta(MatrixR T) { int n = T.GetCols(); Alpha = new double[n]; Beta = new double[n - 1]; Alpha[0] = T[0, 0]; for (int i = 1; i < n; i++) { Alpha[i] = T[i, i]; Beta[i - 1] = T[i - 1, i]; } }
public static MatrixR operator /(double d, MatrixR m) { MatrixR result = new MatrixR(m.GetRows(), m.GetCols()); for (int i = 0; i < m.GetRows(); i++) { for (int j = 0; j < m.GetCols(); j++) { result[i, j] = d / m[i, j]; } } return(result); }
public void Transpose() { MatrixR m = new MatrixR(Cols, Rows); for (int i = 0; i < Rows; i++) { for (int j = 0; j < Cols; j++) { m[j, i] = matrix[i, j]; } } this = m; }
public static MatrixR SetTridiagonalMatrix() { int n = Alpha.GetLength(0); MatrixR t = new MatrixR(n, n); t[0, 0] = Alpha[0]; for (int i = 1; i < n; i++) { t[i, i] = Alpha[i]; t[i - 1, i] = Beta[i - 1]; t[i, i - 1] = Beta[i - 1]; } return(t); }
public static void Jacobi(MatrixR A, double tolerance, out MatrixR x, out VectorR lambda) { MatrixR AA = A.Clone(); int n = A.GetCols(); int maxTransform = 5 * n * n; MatrixR matrix = new MatrixR(n, n); MatrixR R = matrix.Identity(); MatrixR R1 = R; MatrixR A1 = A; lambda = new VectorR(n); x = R; double maxTerm = 0.0; int I, J; do { maxTerm = MaxTerm(A, out I, out J); Transformation(A, R, I, J, out A1, out R1); A = A1; R = R1; }while (maxTerm > tolerance); x = R; for (int i = 0; i < n; i++) { lambda[i] = A[i, i]; } for (int i = 0; i < n - 1; i++) { int index = i; double d = lambda[i]; for (int j = i + 1; j < n; j++) { if (lambda[j] > d) { index = j; d = lambda[j]; } } if (index != i) { lambda = lambda.GetSwap(i, index); x = x.GetColSwap(i, index); } } }
public MatrixR Identity() { MatrixR m = new MatrixR(Rows, Cols); for (int i = 0; i < Rows; i++) { for (int j = 0; j < Cols; j++) { if (i == j) { m[i, j] = 1; } } } return(m); }
public VectorR GaussJordan(MatrixR A, VectorR b) { Triangulate(A, b); int n = b.GetSize(); VectorR x = new VectorR(n); for (int i = n - 1; i >= 0; i--) { double d = A[i, i]; if (Math.Abs(d) < epsilon) { throw new ArgumentException("Diagonal element is too small!"); } x[i] = (b[i] - VectorR.DotProduct(A.GetRowVector(i), x)) / d; } return(x); }
private static MatrixR Jacobian(MFunction f, VectorR x) { double h = 0.0001; int n = x.GetSize(); MatrixR jacobian = new MatrixR(n, n); VectorR x1 = x.Clone(); for (int j = 0; j < n; j++) { x1[j] = x[j] + h; for (int i = 0; i < n; i++) { jacobian[i, j] = (f(x1)[i] - f(x)[i]) / h; } } return(jacobian); }
public static VectorR NewtonMultiEquations(MFunction f, VectorR x0, double tolerance) { LinearSystem ls = new LinearSystem(); VectorR dx = new VectorR(x0.GetSize()); do { MatrixR A = Jacobian(f, x0); if (Math.Sqrt(VectorR.DotProduct(f(x0), f(x0)) / x0.GetSize()) < tolerance) { return(x0); } dx = ls.GaussJordan(A, -f(x0)); x0 = x0 + dx; }while (Math.Sqrt(VectorR.DotProduct(dx, dx)) > tolerance); return(x0); }
public MatrixR LUInverse(MatrixR m) { int n = m.GetRows(); MatrixR u = m.Identity(); LUDecompose(m); VectorR uv = new VectorR(n); for (int i = 0; i < n; i++) { uv = u.GetRowVector(i); LUSubstitute(m, uv); u.ReplaceRow(uv, i); } MatrixR inv = u.GetTranspose(); return(inv); }
public static MatrixR operator -(MatrixR m1, MatrixR m2) { if (!MatrixR.CompareDimension(m1, m2)) { throw new ArgumentOutOfRangeException( "Dimension", m1, "The dimensions of two matrices must be the same!"); } MatrixR result = new MatrixR(m1.GetRows(), m1.GetCols()); for (int i = 0; i < m1.GetRows(); i++) { for (int j = 0; j < m1.GetCols(); j++) { result[i, j] = m1[i, j] - m2[i, j]; } } return(result); }
public static MatrixR Adjoint(MatrixR m) { if (!m.IsSquared()) { throw new ArgumentOutOfRangeException( "Dimension", m.GetRows(), "The matrix must be squared!"); } MatrixR ma = new MatrixR(m.GetRows(), m.GetCols()); for (int i = 0; i < m.GetRows(); i++) { for (int j = 0; j < m.GetCols(); j++) { ma[i, j] = Math.Pow(-1, i + j) * (Determinant(Minor(m, i, j))); } } return(ma.GetTranspose()); }
public static MatrixR Transform(VectorR v1, VectorR v2) { /*if (v1.GetSize() != v2.GetSize()) * { * throw new ArgumentOutOfRangeException( * "v1", v1.GetSize(), "The vectors must have the same size!"); * }*/ MatrixR result = new MatrixR(v1.GetSize(), v2.GetSize()); for (int i = 0; i < v1.GetSize(); i++) { for (int j = 0; j < v2.GetSize(); j++) { result[i, j] = v1[i] * v2[j]; } } return(result); }
public static double Determinant(MatrixR m) { double result = 0.0; if (!m.IsSquared()) { throw new ArgumentOutOfRangeException( "Dimension", m.GetRows(), "The matrix must be squared!"); } if (m.GetRows() == 1) { result = m[0, 0]; } else { for (int i = 0; i < m.GetRows(); i++) { result += Math.Pow(-1, i) * m[0, i] * Determinant(MatrixR.Minor(m, 0, i)); } } return(result); }
private static double MaxTerm(MatrixR A, out int I, out int J) { int n = A.GetCols(); double result = 0.0; I = 0; J = 1; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (Math.Abs(A[i, j]) > result) { result = Math.Abs(A[i, j]); I = i; J = j; } } } return(result); }
private double pivot(MatrixR A, VectorR b, int q) { int n = b.GetSize(); int i = q; double d = 0.0; for (int j = q; j < n; j++) { double dd = Math.Abs(A[j, q]); if (dd > d) { d = dd; i = j; } } if (i > q) { A.GetRowSwap(q, i); b.GetSwap(q, i); } return(A[q, q]); }