コード例 #1
0
            //***********************************************************************
            // Generates a random number with the specified number of bits such
            // that gcd(number, this) = 1
            //***********************************************************************

            public BigInteger genCoPrime(int bits, Random rand)
            {
                bool done = false;
                BigInteger result = new BigInteger();

                while (!done)
                {
                    result.genRandomBits(bits, rand);
                    //Console.WriteLine(result.ToString(16));

                    // gcd test
                    BigInteger g = result.gcd(this);
                    if (g.dataLength == 1 && g.data[0] == 1)
                        done = true;
                }

                return result;
            }
コード例 #2
0
            private bool LucasStrongTestHelper(BigInteger thisVal)
            {
                // Do the test (selects D based on Selfridge)
                // Let D be the first element of the sequence
                // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
                // Let P = 1, Q = (1-D) / 4

                long D = 5, sign = -1, dCount = 0;
                bool done = false;

                while (!done)
                {
                    int Jresult = BigInteger.Jacobi(D, thisVal);

                    if (Jresult == -1)
                        done = true;    // J(D, this) = 1
                    else
                    {
                        if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                            return false;

                        if (dCount == 20)
                        {
                            // check for square
                            BigInteger root = thisVal.sqrt();
                            if (root * root == thisVal)
                                return false;
                        }

                        //Console.WriteLine(D);
                        D = (Math.Abs(D) + 2) * sign;
                        sign = -sign;
                    }
                    dCount++;
                }

                long Q = (1 - D) >> 2;

                /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */

                BigInteger p_add1 = thisVal + 1;
                int s = 0;

                for (int index = 0; index < p_add1.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_add1.data[index] & mask) != 0)
                        {
                            index = p_add1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = p_add1 >> s;

                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();

                int nLen = thisVal.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;

                constant = constant / thisVal;

                BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
                bool isPrime = false;

                if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
                   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                {
                    // u(t) = 0 or V(t) = 0
                    isPrime = true;
                }

                for (int i = 1; i < s; i++)
                {
                    if (!isPrime)
                    {
                        // doubling of index
                        lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                        lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                        //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                        if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                            isPrime = true;
                    }

                    lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
                }


                if (isPrime)     // additional checks for composite numbers
                {
                    // If n is prime and gcd(n, Q) == 1, then
                    // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                    BigInteger g = thisVal.gcd(Q);
                    if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
                    {
                        if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                            lucas[2] += thisVal;

                        BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                        if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                            temp += thisVal;

                        if (lucas[2] != temp)
                            isPrime = false;
                    }
                }

                return isPrime;
            }
コード例 #3
0
            //***********************************************************************
            // Probabilistic prime test based on Rabin-Miller's
            //
            // for any p > 0 with p - 1 = 2^s * t
            //
            // p is probably prime (strong pseudoprime) if for any a < p,
            // 1) a^t mod p = 1 or
            // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
            //
            // Otherwise, p is composite.
            //
            // Returns
            // -------
            // True if "this" is a strong pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            //***********************************************************************

            public bool RabinMillerTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;

                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }

                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;


                // calculate values of s and t
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                int s = 0;

                for (int index = 0; index < p_sub1.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_sub1.data[index] & mask) != 0)
                        {
                            index = p_sub1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = p_sub1 >> s;

                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                Random rand = new Random();

                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;

                    while (!done)       // generate a < n
                    {
                        int testBits = 0;

                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);

                        a.genRandomBits(testBits, rand);

                        int byteLen = a.dataLength;

                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }

                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;

                    BigInteger b = a.modPow(t, thisVal);

                    /*
                    Console.WriteLine("a = " + a.ToString(10));
                    Console.WriteLine("b = " + b.ToString(10));
                    Console.WriteLine("t = " + t.ToString(10));
                    Console.WriteLine("s = " + s);
                    */

                    bool result = false;

                    if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
                        result = true;

                    for (int j = 0; result == false && j < s; j++)
                    {
                        if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                        {
                            result = true;
                            break;
                        }

                        b = (b * b) % thisVal;
                    }

                    if (result == false)
                        return false;
                }
                return true;
            }
コード例 #4
0
            //***********************************************************************
            // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
            //
            // p is probably prime if for any a < p (a is not multiple of p),
            // a^((p-1)/2) mod p = J(a, p)
            //
            // where J is the Jacobi symbol.
            //
            // Otherwise, p is composite.
            //
            // Returns
            // -------
            // True if "this" is a Euler pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            //***********************************************************************

            public bool SolovayStrassenTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;

                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }

                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;


                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                BigInteger p_sub1 = thisVal - 1;
                BigInteger p_sub1_shift = p_sub1 >> 1;

                Random rand = new Random();

                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;

                    while (!done)       // generate a < n
                    {
                        int testBits = 0;

                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);

                        a.genRandomBits(testBits, rand);

                        int byteLen = a.dataLength;

                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }

                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;

                    // calculate a^((p-1)/2) mod p

                    BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
                    if (expResult == p_sub1)
                        expResult = -1;

                    // calculate Jacobi symbol
                    BigInteger jacob = Jacobi(a, thisVal);

                    //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                    //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                    // if they are different then it is not prime
                    if (expResult != jacob)
                        return false;
                }

                return true;
            }
コード例 #5
0
            //***********************************************************************
            // Probabilistic prime test based on Fermat's little theorem
            //
            // for any a < p (p does not divide a) if
            //      a^(p-1) mod p != 1 then p is not prime.
            //
            // Otherwise, p is probably prime (pseudoprime to the chosen base).
            //
            // Returns
            // -------
            // True if "this" is a pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            // Note - this method is fast but fails for Carmichael numbers except
            // when the randomly chosen base is a factor of the number.
            //
            //***********************************************************************

            public bool FermatLittleTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;

                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }

                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;

                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                Random rand = new Random();

                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;

                    while (!done)       // generate a < n
                    {
                        int testBits = 0;

                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);

                        a.genRandomBits(testBits, rand);

                        int byteLen = a.dataLength;

                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }

                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;

                    // calculate a^(p-1) mod p
                    BigInteger expResult = a.modPow(p_sub1, thisVal);

                    int resultLen = expResult.dataLength;

                    // is NOT prime is a^(p-1) mod p != 1

                    if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
                    {
                        //Console.WriteLine("a = " + a.ToString());
                        return false;
                    }
                }

                return true;
            }