コード例 #1
0
ファイル: Math3D.cs プロジェクト: YakNazim/launch-tower
 //rotates points from one frame of reference to another using a rotation matrix
 public static void RotatePoints(Matrix3x3 rotMatrix, Vector3[] bodyFramePoints, Vector3[] referenceFramePoints)
 {
     for (int i = 0; i < referenceFramePoints.Length; i++)
     {
         bodyFramePoints[i] = Matrix3x3.Multiply(referenceFramePoints[i], rotMatrix);
     }
 }
コード例 #2
0
ファイル: Math3D.cs プロジェクト: YakNazim/launch-tower
        //computes a rotation matrix based on a previous rotation matrix and a series of angle rotations
        //better algorithm then nextRotMatrix - still need to keep rotation < 180 degrees
        //This uses the rectangular rule
        public static Matrix3x3 nextRotMatrix2(Matrix3x3 rotMatrix, Vector3 rotations)
        {
            //This uses C2 = C1( I + (sin(w)/w)B + ((1 - cos(w))/w)B^2 )
            //where w is the total rotation, I is the identity matrix and B is the scew symmetric form of the rotation vector

            Matrix3x3 I = new Matrix3x3();

            I.matrix[0, 0] = 1; I.matrix[1, 0] = 0; I.matrix[2, 0] = 0;
            I.matrix[0, 1] = 0; I.matrix[1, 1] = 1; I.matrix[2, 1] = 0;
            I.matrix[0, 2] = 0; I.matrix[1, 2] = 0; I.matrix[2, 2] = 1;

            Matrix3x3 B = new Matrix3x3();

            B.matrix[0, 0] = 0;             B.matrix[1, 0] = -rotations.Z;  B.matrix[2, 0] = rotations.Y;
            B.matrix[0, 1] = rotations.Z;   B.matrix[1, 1] = 0;             B.matrix[2, 1] = -rotations.X;
            B.matrix[0, 2] = -rotations.Y;  B.matrix[1, 2] = rotations.X;   B.matrix[2, 2] = 0;

            double totalRotation = Vector3.Length(rotations);

            Matrix3x3 smallRot;

            //Don't divide by 0
            if (totalRotation > 0)
            {
                smallRot = Matrix3x3.Add(Matrix3x3.Add(
                                             I,
                                             Matrix3x3.Multiply(Math.Sin(totalRotation) / totalRotation, B)),
                                         Matrix3x3.Multiply((1 - Math.Cos(totalRotation)) / (totalRotation * totalRotation), Matrix3x3.Multiply(B, B))
                                         );
            }
            else
            {
                smallRot = I;
            }

            Matrix3x3 newRotMatrix = Matrix3x3.Multiply(rotMatrix, smallRot);

            //If these are off, it's because of slight errors - these are no longer Rotation matrices, strictly speaking
            //The determinant should be 1
            //double det = Matrix3x3.Determinant(newRotMatrix)
            //This should give an Identity matrix
            //Matrix3x3 I = Matrix3x3.Multiply(Matrix3x3.Transpose(newRotMatrix), newRotMatrix);

            //Normalize to the the vectors Unit length
            //return newRotMatrix;
            return(Matrix3x3.Normalize(newRotMatrix));

            //TODO: We should really be doing an orthonormalization
        }
コード例 #3
0
        void calculatePosition(SpatialEventData data, double timeChangeSeconds)
        {
            Vector3 accelForcesBody = new Vector3(data.Acceleration[0], data.Acceleration[2], -data.Acceleration[1]);
            Vector3 accelForcesRef  = Matrix3x3.Multiply(accelForcesBody, p.rotMatrix);

            Vector3 accelForcesRefWithoutGravity = Vector3.Subtract(accelForcesRef, gravityRef);

            //convert from g's to m/s^2 - also, X is backwards
            accelForcesRefWithoutGravity.X = accelForcesRefWithoutGravity.X * g;
            accelForcesRefWithoutGravity.Y = -accelForcesRefWithoutGravity.Y * g;
            accelForcesRefWithoutGravity.Z = accelForcesRefWithoutGravity.Z * g;

            //Integrate accelerations into velocities in m/s: v2 = v1 + at
            velocities.X += timeChangeSeconds * accelForcesRefWithoutGravity.X;
            velocities.Y += timeChangeSeconds * accelForcesRefWithoutGravity.Y;
            velocities.Z += timeChangeSeconds * accelForcesRefWithoutGravity.Z;

            //Integrate velocities into positions in m: s2 = s1 + v2t
            positions.X += timeChangeSeconds * velocities.X;
            positions.Y += timeChangeSeconds * velocities.Y;
            positions.Z += timeChangeSeconds * velocities.Z;

            TimeSpan passed = DateTime.Now.Subtract(timer);

            //print every 50 ms
            if (passed.TotalMilliseconds > milliseconds + 50)
            {
                milliseconds = passed.TotalMilliseconds;

                xVelTxt.Text = velocities.X.ToString("F4");
                yVelTxt.Text = velocities.Y.ToString("F4");
                zVelTxt.Text = velocities.Z.ToString("F4");

                xPosnTxt.Text = positions.X.ToString("F4");
                yPosnTxt.Text = positions.Y.ToString("F4");
                zPosnTxt.Text = positions.Z.ToString("F4");

                xAccelTxt.Text = accelForcesRefWithoutGravity.X.ToString("F4");
                yAccelTxt.Text = accelForcesRefWithoutGravity.Y.ToString("F4");
                zAccelTxt.Text = accelForcesRefWithoutGravity.Z.ToString("F4");

                totVelTxt.Text   = Vector3.Length(velocities).ToString("F4");
                totPosnTxt.Text  = Vector3.Length(positions).ToString("F4");
                totAccelTxt.Text = Vector3.Length(accelForcesRefWithoutGravity).ToString("F4");

                timeTxt.Text = "" + passed.Minutes.ToString().PadLeft(2) + ":" + passed.Seconds.ToString().PadLeft(2) + "." + passed.Milliseconds.ToString().PadLeft(2);
            }
        }
コード例 #4
0
ファイル: Math3D.cs プロジェクト: YakNazim/launch-tower
        //computes a rotation matrix based on a previous rotation matrix and a series of angle rotations
        public static Matrix3x3 nextRotMatrix(Matrix3x3 rotMatrix, Vector3 rotations)
        {
            //assuming C(t2) = C(t1)A(t1) where A(t1) is the rotation matrix relating the body frame between time t1 and t2 (I + B)
            //A(t1) = [  1  y  z ]  for small angles (<180 degrees). x, y and z are rotations about the axes
            //        [ -y  1  x ]
            //        [ -z -x  1 ]

            Matrix3x3 A = new Matrix3x3();

            A.matrix[0, 0] = 1;             A.matrix[1, 0] = rotations.Y;   A.matrix[2, 0] = rotations.Z;
            A.matrix[0, 1] = -rotations.Y;  A.matrix[1, 1] = 1;             A.matrix[2, 1] = rotations.X;
            A.matrix[0, 2] = -rotations.Z;  A.matrix[1, 2] = -rotations.X;  A.matrix[2, 2] = 1;

            //Normalized to keep the vectors unit length
            Matrix3x3 newRotMatrix = Matrix3x3.Normalize(Matrix3x3.Multiply(rotMatrix, A));

            return(newRotMatrix);
        }
コード例 #5
0
        private void finishZeroing()
        {
            //align body rotation matrix with reference frame
            Matrix3x3 rotMatrix = new Matrix3x3();

            if (initialRotWithGravity.Checked)
            {
                //base the initial rotation matrix on the gravity measurement - keep the y axis (up-down) rotated so the cord is facing out
                //Calculate the angles and make sure they are -1 <= x <= 1

                //get a normalized version of the gravity vector to find angles
                gravityTemp = Vector3.Normalize(gravityRef);

                double xAngle = Math.Asin(-gravityTemp.X);
                double zAngle = Math.Asin(gravityTemp.Z);

                //The board is up-side down
                if (gravityRef.Y > 0)
                {
                    xAngle = -xAngle;
                    zAngle = -zAngle;
                }

                Matrix3x3 xRotMatrix = new Matrix3x3();
                xRotMatrix.matrix[0, 0] = Math.Cos(xAngle); xRotMatrix.matrix[1, 0] = -Math.Sin(xAngle); xRotMatrix.matrix[2, 0] = 0;
                xRotMatrix.matrix[0, 1] = Math.Sin(xAngle); xRotMatrix.matrix[1, 1] = Math.Cos(xAngle); xRotMatrix.matrix[2, 1] = 0;
                xRotMatrix.matrix[0, 2] = 0; xRotMatrix.matrix[1, 2] = 0; xRotMatrix.matrix[2, 2] = 1;

                //no rotation
                Matrix3x3 yRotMatrix = new Matrix3x3();
                yRotMatrix.matrix[0, 0] = 1; yRotMatrix.matrix[1, 0] = 0; yRotMatrix.matrix[2, 0] = 0;
                yRotMatrix.matrix[0, 1] = 0; yRotMatrix.matrix[1, 1] = 1; yRotMatrix.matrix[2, 1] = 0;
                yRotMatrix.matrix[0, 2] = 0; yRotMatrix.matrix[1, 2] = 0; yRotMatrix.matrix[2, 2] = 1;

                Matrix3x3 zRotMatrix = new Matrix3x3();
                zRotMatrix.matrix[0, 0] = 1; zRotMatrix.matrix[1, 0] = 0; zRotMatrix.matrix[2, 0] = 0;
                zRotMatrix.matrix[0, 1] = 0; zRotMatrix.matrix[1, 1] = Math.Cos(zAngle); zRotMatrix.matrix[2, 1] = -Math.Sin(zAngle);
                zRotMatrix.matrix[0, 2] = 0; zRotMatrix.matrix[1, 2] = Math.Sin(zAngle); zRotMatrix.matrix[2, 2] = Math.Cos(zAngle);

                rotMatrix = Matrix3x3.Multiply(Matrix3x3.Multiply(xRotMatrix, yRotMatrix), zRotMatrix);

                //The board is up-side down
                if (gravityRef.Y < 0)
                {
                    rotMatrix = Matrix3x3.Multiply(-1, rotMatrix);
                }

                //now rotate gravity into reference frame
                gravityRef = Matrix3x3.Multiply(gravityRef, rotMatrix);

                magRef = Matrix3x3.Multiply(magRef, rotMatrix);
            }
            //Assume initial rotation is flat
            else
            {
                rotMatrix.matrix[0, 0] = 1; rotMatrix.matrix[1, 0] = 0; rotMatrix.matrix[2, 0] = 0;
                rotMatrix.matrix[0, 1] = 0; rotMatrix.matrix[1, 1] = 1; rotMatrix.matrix[2, 1] = 0;
                rotMatrix.matrix[0, 2] = 0; rotMatrix.matrix[1, 2] = 0; rotMatrix.matrix[2, 2] = 1;
            }

            timer         = DateTime.Now;
            milliseconds  = 0;
            milliseconds2 = 0;

            p.rotMatrix = rotMatrix;

            xGravTxt.Text   = gravityRef.X.ToString("F4");
            yGravTxt.Text   = gravityRef.Y.ToString("F4");
            zGravTxt.Text   = gravityRef.Z.ToString("F4");
            totGravTxt.Text = Vector3.Length(gravityRef).ToString("F4");

            Math3D.RotatePoints(p.rotMatrix, p.vertexBuffer, p.originalVertices);
            zeroStatusTxt.Text = "Done.";
        }
コード例 #6
0
        void calculateAttitude(SpatialEventData data, double timeChangeSeconds)
        {
            Vector3 rots = new Vector3(0, 0, 0);

            foreach (double angRate in data.AngularRate)
            {
                if ((angRate >= phid.gyroAxes[0].AngularRateMax) || (angRate <= phid.gyroAxes[0].AngularRateMin))
                {
                    Pipeline.fillpen = Color.Red;
                    overRotCount++;
                    overRotsTxt.Text = overRotCount.ToString();
                }
            }

            rots.X = -(timeChangeSeconds * data.AngularRate[0] * Math.PI / 180);
            rots.Y = -(timeChangeSeconds * data.AngularRate[2] * Math.PI / 180);
            rots.Z = (timeChangeSeconds * data.AngularRate[1] * Math.PI / 180);

            Matrix3x3 nextRotMatrix = Math3D.nextRotMatrix2(p.rotMatrix, rots);

            TimeSpan passed = DateTime.Now.Subtract(timer);

            //accumulate magnetic data
            if (data.MagneticField.Length > 0)
            {
                magTemp.X += data.MagneticField[0];
                magTemp.Y += data.MagneticField[2];
                magTemp.Z -= data.MagneticField[1];
                magSamplesTaken++;

                //factor into rotations at some interval
                if (passed.TotalMilliseconds > milliseconds2 + 100)
                {
                    milliseconds2 = passed.TotalMilliseconds;
                    //convert vector in reference frame to body frame
                    Vector3 expectedMag = Matrix3x3.Multiply(magRef, Matrix3x3.Transpose(nextRotMatrix));

                    //actual magnetic vector
                    magTemp.X /= magSamplesTaken;
                    magTemp.Y /= magSamplesTaken;
                    magTemp.Z /= magSamplesTaken;

                    magSamplesTaken = 0;

                    if (doMag)
                    {
                        //find the angles between the two magnetic vectors. This gives a rotation matrix
                        Matrix3x3 magRot = Math3D.getRotationMatrix(magTemp, expectedMag);

                        //If these are off, it's because of slight errors - these are no longer Rotation matrices, strictly speaking
                        //The determinant should be 1
                        double det = Matrix3x3.Determinant(magRot);
                        //This should give an Identity matrix
                        Matrix3x3 I = Matrix3x3.Multiply(Matrix3x3.Transpose(magRot), magRot);

                        Vector3 magTempRot = Matrix3x3.Multiply(magTemp, magRot);

                        Vector3 magDiff = Vector3.Subtract(Vector3.Normalize(magTemp), Vector3.Normalize(expectedMag));

                        // These should be close to 0
                        xMagdiffTxt.Text = (magDiff.X * 180.0 / Math.PI).ToString("F4");
                        yMagdiffTxt.Text = (magDiff.Y * 180.0 / Math.PI).ToString("F4");
                        zMagdiffTxt.Text = (magDiff.Z * 180.0 / Math.PI).ToString("F4");

                        totMagDivTxt.Text = (Math.Acos(Vector3.DotProduct(Vector3.Normalize(magTemp), Vector3.Normalize(expectedMag))) * 180.0 / Math.PI).ToString("F4");

                        //correct the rotation matrix
                        if (compassCorrections.Checked)
                        {
                            nextRotMatrix = Matrix3x3.Normalize(Matrix3x3.Multiply(Matrix3x3.Normalize(nextRotMatrix), Matrix3x3.Normalize(magRot)));
                        }
                    }
                    magTemp.X = 0;
                    magTemp.Y = 0;
                    magTemp.Z = 0;
                    doMag     = true;
                }
            }

            p.rotMatrix = nextRotMatrix;
        }