public GridParameterSelection(TaskFactory taskFactory, ITrainingModel training, GridSearchParameters parameters) { Guard.NotNull(() => parameters, parameters); Guard.NotNull(() => taskFactory, taskFactory); Guard.NotNull(() => training, training); SearchParameters = parameters; Training = training; this.taskFactory = taskFactory; }
public IParameterSelection Create(TrainingHeader header, IArffDataSet dataset) { Guard.NotNull(() => header, header); Guard.NotNull(() => dataset, dataset); Parameter defaultParameter = new Parameter(); defaultParameter.KernelType = header.Kernel; defaultParameter.CacheSize = 200; defaultParameter.SvmType = header.SvmType; var model = new TrainingModel(header); if (!header.GridSelection) { return(new NullParameterSelection(defaultParameter, model)); } GridSearchParameters searchParameters; logger.Info("Investigate LibLinear"); if (header.Kernel == KernelType.Linear) { var gamma = GetList(1, 1, 1); if (dataset.Header.Total > (dataset.TotalDocuments * 10)) { logger.Info("Selecting Linear features >> instances"); defaultParameter.Shrinking = false; } else { logger.Warn("Investigate LibLinear"); } var training = problemFactory.Construct(dataset).GetProblem(); defaultParameter.Weights = WeightCalculation.GetWeights(training.Y); foreach (var classItem in defaultParameter.Weights) { logger.Info($"Using class [{classItem.Key}] with weight [{classItem.Value}]"); } searchParameters = new GridSearchParameters(3, GetList(-1, 2, 1), gamma, defaultParameter); } else { searchParameters = new GridSearchParameters(3, GetList(-5, 15, 2), GetList(-15, 3, 2), defaultParameter); } return(new GridParameterSelection(taskFactory, model, searchParameters)); }