public MasterConfiguration SaveMasterConfiguration(MasterConfiguration masterConfiguration, EncryptionInfo encryptionInfo) { if (File.Exists(Name)) File.Delete(Name); string plainTextObjectData; plainTextObjectData = _objectSerializationProvider.Serialize(masterConfiguration); string encryptedObjectData; encryptedObjectData = _encryptionProvider.Encrypt(plainTextObjectData, encryptionInfo); using (StreamWriter writer = new StreamWriter(Name)) { writer.Write(encryptedObjectData); } return GetMasterConfiguration(encryptionInfo); }
public MasterConfiguration GetMasterConfiguration(EncryptionInfo encryptionInfo) { if (File.Exists(Name) == false) return null; string rawFileData; using (StreamReader reader = new StreamReader(Name)) { rawFileData = reader.ReadToEnd(); } string plainTextObjectData; plainTextObjectData = _encryptionProvider.Decrypt(rawFileData, encryptionInfo); MasterConfiguration mc = _objectSerializationProvider.Deserialize<MasterConfiguration>(plainTextObjectData); return mc; }
public string Encrypt(string plainText, EncryptionInfo info) { // Convert strings into byte arrays. // Let us assume that strings only contain ASCII codes. // If strings include Unicode characters, use Unicode, UTF7, or UTF8 // encoding. byte[] initVectorBytes = Encoding.ASCII.GetBytes(info.InitVector); byte[] saltValueBytes = Encoding.ASCII.GetBytes(info.SaltValue); // Convert our plaintext into a byte array. // Let us assume that plaintext contains UTF8-encoded characters. byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText); // First, we must create a password, from which the key will be derived. // This password will be generated from the specified passphrase and // salt value. The password will be created using the specified hash // algorithm. Password creation can be done in several iterations. PasswordDeriveBytes password = new PasswordDeriveBytes( info.PassPhrase, saltValueBytes, info.HashAlgorithm, info.Iterations); // Use the password to generate pseudo-random bytes for the encryption // key. Specify the size of the key in bytes (instead of bits). byte[] keyBytes = password.GetBytes(info.KeySize / 8); // Create uninitialized Rijndael encryption object. RijndaelManaged symmetricKey = new RijndaelManaged(); // It is reasonable to set encryption mode to Cipher Block Chaining // (CBC). Use default options for other symmetric key parameters. symmetricKey.Mode = CipherMode.CBC; // Generate encryptor from the existing key bytes and initialization // vector. Key size will be defined based on the number of the key // bytes. ICryptoTransform encryptor = symmetricKey.CreateEncryptor( keyBytes, initVectorBytes); // Define memory stream which will be used to hold encrypted data. MemoryStream memoryStream = new MemoryStream(); // Define cryptographic stream (always use Write mode for encryption). CryptoStream cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write); // Start encrypting. cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length); // Finish encrypting. cryptoStream.FlushFinalBlock(); // Convert our encrypted data from a memory stream into a byte array. byte[] cipherTextBytes = memoryStream.ToArray(); // Close both streams. memoryStream.Close(); cryptoStream.Close(); // Convert encrypted data into a base64-encoded string. string cipherText = Convert.ToBase64String(cipherTextBytes); // Return encrypted string. return cipherText; }
public bool Equals(EncryptionInfo other) { if (ReferenceEquals(null, other)) return false; if (ReferenceEquals(this, other)) return true; return other._keySize == _keySize && Equals(other._hashAlgorithm, _hashAlgorithm) && Equals(other._initVector, _initVector) && Equals(other.PassPhrase, PassPhrase) && Equals(other.SaltValue, SaltValue) && other.Iterations == Iterations; }
public string Decrypt(string cipherText, EncryptionInfo info) { // Convert strings defining encryption key characteristics into byte // arrays. Let us assume that strings only contain ASCII codes. // If strings include Unicode characters, use Unicode, UTF7, or UTF8 // encoding. byte[] initVectorBytes = Encoding.ASCII.GetBytes(info.InitVector); byte[] saltValueBytes = Encoding.ASCII.GetBytes(info.SaltValue); // Convert our ciphertext into a byte array. byte[] cipherTextBytes = Convert.FromBase64String(cipherText); // First, we must create a password, from which the key will be // derived. This password will be generated from the specified // passphrase and salt value. The password will be created using // the specified hash algorithm. Password creation can be done in // several iterations. PasswordDeriveBytes password = new PasswordDeriveBytes( info.PassPhrase, saltValueBytes, info.HashAlgorithm, info.Iterations); // Use the password to generate pseudo-random bytes for the encryption // key. Specify the size of the key in bytes (instead of bits). byte[] keyBytes = password.GetBytes(info.KeySize / 8); // Create uninitialized Rijndael encryption object. RijndaelManaged symmetricKey = new RijndaelManaged(); // It is reasonable to set encryption mode to Cipher Block Chaining // (CBC). Use default options for other symmetric key parameters. symmetricKey.Mode = CipherMode.CBC; // Generate decryptor from the existing key bytes and initialization // vector. Key size will be defined based on the number of the key // bytes. ICryptoTransform decryptor = symmetricKey.CreateDecryptor( keyBytes, initVectorBytes); // Define memory stream which will be used to hold encrypted data. MemoryStream memoryStream = new MemoryStream(cipherTextBytes); // Define cryptographic stream (always use Read mode for encryption). CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read); // Since at this point we don't know what the size of decrypted data // will be, allocate the buffer long enough to hold ciphertext; // plaintext is never longer than ciphertext. byte[] plainTextBytes = new byte[cipherTextBytes.Length]; // Start decrypting. int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length); // Close both streams. memoryStream.Close(); cryptoStream.Close(); // Convert decrypted data into a string. // Let us assume that the original plaintext string was UTF8-encoded. string plainText = Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount); // Return decrypted string. return plainText; }