private void ReportPerHla(OptimizationParameterList qmrrParams, Dictionary <string, BestSoFar <double, TrueCollection> > peptideToBestHlaAssignmentSoFar, string directory, string name) { string fileName = string.Format(@"{0}\NoisyOr.PeptideHlaProbability.{1}.new.txt", directory, name); using (StreamWriter output = File.CreateText(fileName)) { output.WriteLine(SpecialFunctions.CreateTabString("Peptide", "HLA", "LogOdds", "Probability")); foreach (QmrrPartialModel qmrrPartialModel in QmrrPartialModelCollection) { QmrrModelMissingAssignment aQmrrModelMissingAssignment = QmrrModelMissingAssignment.GetInstance(ModelLikelihoodFactories, qmrrPartialModel, qmrrParams); BestSoFar <double, TrueCollection> bestHlaAssignment = peptideToBestHlaAssignmentSoFar[qmrrPartialModel.Peptide]; Set <Hla> trueCollectionFullAsSet = new Set <Hla>(bestHlaAssignment.Champ); double loglikelihoodFull = bestHlaAssignment.ChampsScore; foreach (Hla hla in trueCollectionFullAsSet) { bool known = qmrrPartialModel.KnownHlaSet.Contains(hla); if (!known) { Set <Hla> allLessOne = trueCollectionFullAsSet.SubtractElement(hla); TrueCollection trueCollectionWithout = TrueCollection.GetInstance(allLessOne); double loglikelihoodWithout = aQmrrModelMissingAssignment.LogLikelihoodOfCompleteModelConditionedOnKnownHlas(trueCollectionWithout); double logOdds = loglikelihoodFull - loglikelihoodWithout; double probabilityFull = Math.Exp(loglikelihoodFull); double probabilityWithout = Math.Exp(loglikelihoodWithout); double probability = probabilityFull / (probabilityFull + probabilityWithout); Debug.Assert(logOdds >= 0); // real assert output.WriteLine(SpecialFunctions.CreateTabString(qmrrPartialModel.Peptide, hla, logOdds, probability)); } } } } }
public static QmrrModelMissingAssignment GetInstance(ModelLikelihoodFactories modelLikelihoodFactories, QmrrPartialModel qmrrPartialModel, OptimizationParameterList qmrrParams) { QmrrModelMissingAssignment aQmrrModelMissingAssignment = new QmrrModelMissingAssignment(); aQmrrModelMissingAssignment.QmrrPartialModel = qmrrPartialModel; aQmrrModelMissingAssignment.OptimizationParameterList = qmrrParams; aQmrrModelMissingAssignment.KnownHlaSet = qmrrPartialModel.KnownHlaSet; aQmrrModelMissingAssignment.SwitchableHlasOfRespondingPatients = qmrrPartialModel.SwitchableHlasOfRespondingPatients; aQmrrModelMissingAssignment.ModelLikelihoodFactories = modelLikelihoodFactories; aQmrrModelMissingAssignment.LogLikelihoodOfCompleteModelConditionedOnKnownHlas = modelLikelihoodFactories.MissingAssignmentDelegateFactory(qmrrPartialModel, qmrrParams); return(aQmrrModelMissingAssignment); //SetOfAllHlasCount = qmrrPartialModel.HlaList.Count; }
protected QmmrModelOnePeptide QmmrModelOnePeptideGetInstance(QmrrPartialModel qmrrPartialModel, OptimizationParameterList qmrrParams, double depth) { QmmrModelOnePeptide aQmmrModelOnePeptide = new QmmrModelOnePeptide(); aQmmrModelOnePeptide.QmrrModelMissingAssignment = QmrrModelMissingAssignment.GetInstance(ModelLikelihoodFactories, qmrrPartialModel, qmrrParams); aQmmrModelOnePeptide.CreateNoSwitchablesHlaAssignment(); if (depth == 0) { // do nothing } else if (depth == Math.Floor(depth)) { SpecialFunctions.CheckCondition(depth > 0); aQmmrModelOnePeptide.SetForDepthSearch((int)Math.Floor(depth)); } else { SpecialFunctions.CheckCondition(depth == 1.5); aQmmrModelOnePeptide.SetForBitFlipsAnd1Replacement(); } return(aQmmrModelOnePeptide); }