/// <summary> /// Simplify learning of examples with action dependent features. /// </summary> /// <typeparam name="TExample">User example type.</typeparam> /// <typeparam name="TActionDependentFeature">Action dependent feature type.</typeparam> /// <param name="vw">The VowpalWabbit instances.</param> /// <param name="serializer">The example serializer.</param> /// <param name="actionDependentFeatureSerializer">The action dependent feature serializer.</param> /// <param name="example">The example.</param> /// <param name="actionDependentFeatures">The action dependent features.</param> /// <param name="predictOrLearn">An action executed once the set of valid examples is determined. </param> /// <param name="index">The optional index of the action dependent feature this label belongs too.</param> /// <param name="label">The optional label to be used for learning or evaluation.</param> public static void Execute <TExample, TActionDependentFeature>( VowpalWabbit vw, VowpalWabbitSerializer <TExample> serializer, VowpalWabbitSerializer <TActionDependentFeature> actionDependentFeatureSerializer, TExample example, IReadOnlyCollection <TActionDependentFeature> actionDependentFeatures, LearnOrPredictAction <TActionDependentFeature> predictOrLearn, int?index = null, ILabel label = null) { Contract.Requires(vw != null); Contract.Requires(actionDependentFeatureSerializer != null); Contract.Requires(example != null); Contract.Requires(actionDependentFeatures != null); var examples = new List <VowpalWabbitExample>(actionDependentFeatures.Count + 1); var validExamples = new List <VowpalWabbitExample>(actionDependentFeatures.Count + 1); var validActionDependentFeatures = new List <ActionDependentFeature <TActionDependentFeature> >(actionDependentFeatures.Count + 1); var emptyActionDependentFeatures = new List <ActionDependentFeature <TActionDependentFeature> >(actionDependentFeatures.Count + 1); try { // contains prediction results if (serializer != null) { var sharedExample = serializer.Serialize(example, SharedLabel.Instance); // check if we have shared features if (sharedExample != null) { examples.Add(sharedExample); if (!sharedExample.IsNewLine) { validExamples.Add(sharedExample); } } } var i = 0; foreach (var actionDependentFeature in actionDependentFeatures) { var adfExample = actionDependentFeatureSerializer.Serialize(actionDependentFeature, index != null && i == index ? label : null); Contract.Assert(adfExample != null); examples.Add(adfExample); if (!adfExample.IsNewLine) { validExamples.Add(adfExample); validActionDependentFeatures.Add(new ActionDependentFeature <TActionDependentFeature>(i, actionDependentFeature)); } else { emptyActionDependentFeatures.Add(new ActionDependentFeature <TActionDependentFeature>(i, actionDependentFeature)); } i++; } if (validActionDependentFeatures.Count == 0) { return; } // signal we're finished using an empty example var empty = vw.GetOrCreateEmptyExample(); examples.Add(empty); validExamples.Add(empty); predictOrLearn(validExamples, validActionDependentFeatures, emptyActionDependentFeatures); } finally { // dispose examples // Note: must not dispose examples before final example // as the learning algorithm (such as cbf) keeps a reference // to the example foreach (var e in examples) { e.Dispose(); } } }
/// <summary> /// Simplify prediction of examples with action dependent features. /// </summary> /// <typeparam name="TExample">The type of the user example.</typeparam> /// <typeparam name="TActionDependentFeature">The type of the user action dependent features.</typeparam> /// <param name="vw">The vw instance.</param> /// <param name="serializer">The serializer for <typeparamref name="TExample"/>.</param> /// <param name="actionDependentFeatureSerializer">The serializer for <typeparamref name="TActionDependentFeature"/>.</param> /// <param name="example">The user example.</param> /// <param name="actionDependentFeatures">The action dependent features.</param> /// <returns>An ranked subset of predicted action indexes.</returns> public static int[] PredictIndex <TExample, TActionDependentFeature>( VowpalWabbit vw, VowpalWabbitSerializer <TExample> serializer, VowpalWabbitSerializer <TActionDependentFeature> actionDependentFeatureSerializer, TExample example, IEnumerable <TActionDependentFeature> actionDependentFeatures) { Contract.Requires(vw != null); Contract.Requires(serializer != null); Contract.Requires(actionDependentFeatureSerializer != null); Contract.Requires(example != null); Contract.Requires(actionDependentFeatures != null); // shared |userlda :.1 |che a:.1 // `doc1 |lda :.1 :.2 [1] // `doc2 |lda :.2 :.3 [2] // <new line> var examples = new List <VowpalWabbitExample>(); try { // contains prediction results var sharedExample = serializer.Serialize(vw, example); // check if we have shared features if (sharedExample != null) { examples.Add(sharedExample); vw.Predict(sharedExample); } // leave as loop (vs. linq) so if the serializer throws an exception, anything allocated so far can be free'd foreach (var actionDependentFeature in actionDependentFeatures) { var adfExample = actionDependentFeatureSerializer.Serialize(vw, actionDependentFeature); Contract.Assert(adfExample != null); examples.Add(adfExample); vw.Predict(adfExample); } // signal we're finished using an empty example var empty = vw.GetOrCreateEmptyExample(); examples.Add(empty); vw.Predict(empty); // Nasty workaround. Since the prediction result is stored in the first example // and we'll have to get an actual VowpalWabbitExampt var firstExample = examples.FirstOrDefault(); if (firstExample == null) { return(null); } return(firstExample.GetPrediction(vw, VowpalWabbitPredictionType.Multilabel)); } finally { // dispose examples // Note: must not dispose examples before final example // as the learning algorithm (such as cbf) keeps a reference // to the example foreach (var e in examples) { e.Dispose(); } } }
/// <summary> /// Simplify learning of examples with action dependent features. /// </summary> public static void Learn <TExample, TActionDependentFeature>( VowpalWabbit vw, VowpalWabbitSerializer <TExample> serializer, VowpalWabbitSerializer <TActionDependentFeature> actionDependentFeatureSerializer, TExample example, IEnumerable <TActionDependentFeature> actionDependentFeatures, int index, ILabel label) { Contract.Requires(vw != null); Contract.Requires(serializer != null); Contract.Requires(actionDependentFeatureSerializer != null); Contract.Requires(example != null); Contract.Requires(actionDependentFeatures != null); Contract.Requires(index >= 0); Contract.Requires(label != null); #if DEBUG // only in debug, since it's a hot path if (actionDependentFeatureSerializer.CachesExamples) { throw new NotSupportedException("Cached examples cannot be used for learning"); } #endif var examples = new List <VowpalWabbitExample>(); try { // contains prediction results var sharedExample = serializer.Serialize(vw, example, SharedLabel.Instance); // check if we have shared features if (sharedExample != null) { examples.Add(sharedExample); vw.Learn(sharedExample); } var i = 0; foreach (var actionDependentFeature in actionDependentFeatures) { var adfExample = actionDependentFeatureSerializer.Serialize(vw, actionDependentFeature, i == index ? label : null); Contract.Assert(adfExample != null); examples.Add(adfExample); vw.Learn(adfExample); i++; } // signal we're finished using an empty example var empty = vw.GetOrCreateEmptyExample(); examples.Add(empty); vw.Learn(empty); // Dump input file for command line learning //File.AppendAllLines(@"c:\temp\msn.txt", // examples.OfType<VowpalWabbitDebugExample>() // .Select(e => e.VowpalWabbitString) // .Union(new[] { "" })); } finally { // dispose examples // Note: must not dispose examples before final example // as the learning algorithm (such as cbf) keeps a reference // to the example foreach (var e in examples) { e.Dispose(); } } }
/// <summary> /// Simplify learning of examples with action dependent features. /// </summary> /// <typeparam name="TExample">The type of the user example.</typeparam> /// <typeparam name="TActionDependentFeature">The type of the user action dependent features.</typeparam> /// <param name="vw">The vw instance.</param> /// <param name="serializer">The serializer for <typeparamref name="TExample"/>.</param> /// <param name="actionDependentFeatureSerializer">The serializer for <typeparamref name="TActionDependentFeature"/>.</param> /// <param name="example">The user example.</param> /// <param name="actionDependentFeatures">The action dependent features.</param> /// <param name="index">The index of action dependent feature to label.</param> /// <param name="label">The label for the selected action dependent feature.</param> /// <returns>An ranked subset of predicted action indexes.</returns> public static int[] LearnAndPredictIndex <TExample, TActionDependentFeature>( VowpalWabbit vw, VowpalWabbitSerializer <TExample> serializer, VowpalWabbitSerializer <TActionDependentFeature> actionDependentFeatureSerializer, TExample example, IEnumerable <TActionDependentFeature> actionDependentFeatures, int index, ILabel label) { Contract.Requires(vw != null); Contract.Requires(serializer != null); Contract.Requires(actionDependentFeatureSerializer != null); Contract.Requires(example != null); Contract.Requires(actionDependentFeatures != null); Contract.Requires(index >= 0); Contract.Requires(label != null); #if DEBUG // only in debug, since it's a hot path if (actionDependentFeatureSerializer.CachesExamples) { throw new NotSupportedException("Cached examples cannot be used for learning"); } #endif var examples = new List <VowpalWabbitExample>(); try { // contains prediction results var sharedExample = serializer.Serialize(vw, example); // check if we have shared features if (sharedExample != null) { examples.Add(sharedExample); vw.Learn(sharedExample); } // leave as loop (vs. linq) so if the serializer throws an exception, anything allocated so far can be free'd var i = 0; foreach (var actionDependentFeature in actionDependentFeatures) { var adfExample = actionDependentFeatureSerializer.Serialize(vw, actionDependentFeature, i == index ? label : null); Contract.Assert(adfExample != null); examples.Add(adfExample); vw.Learn(adfExample); i++; } // signal we're finished using an empty example var empty = vw.GetOrCreateEmptyExample(); examples.Add(empty); vw.Learn(empty); // Nasty workaround. Since the prediction result is stored in the first example // and we'll have to get an actual VowpalWabbitExampt var firstExample = examples.FirstOrDefault(); if (firstExample == null) { return(null); } return(firstExample.GetPrediction(vw, VowpalWabbitPredictionType.Multilabel)); } finally { // dispose examples // Note: must not dispose examples before final example // as the learning algorithm (such as cbf) keeps a reference // to the example foreach (var e in examples) { e.Dispose(); } } }