public static VoronoiGraph ComputeVoronoiGraph(IEnumerable Datapoints) { BinaryPriorityQueue PQ = new BinaryPriorityQueue(); Hashtable CurrentCircles = new Hashtable(); VoronoiGraph VG = new VoronoiGraph(); VNode RootNode = null; foreach (Vector V in Datapoints) { PQ.Push(new VDataEvent(V)); } while (PQ.Count > 0) { VEvent VE = PQ.Pop() as VEvent; VDataNode[] CircleCheckList; if (VE is VDataEvent) { RootNode = VNode.ProcessDataEvent(VE as VDataEvent, RootNode, VG, VE.Y, out CircleCheckList); } else if (VE is VCircleEvent) { CurrentCircles.Remove(((VCircleEvent)VE).NodeN); if (!((VCircleEvent)VE).Valid) { continue; } RootNode = VNode.ProcessCircleEvent(VE as VCircleEvent, RootNode, VG, VE.Y, out CircleCheckList); } else { throw new Exception("Got event of type " + VE.GetType().ToString() + "!"); } foreach (VDataNode VD in CircleCheckList) { if (CurrentCircles.ContainsKey(VD)) { ((VCircleEvent)CurrentCircles[VD]).Valid = false; CurrentCircles.Remove(VD); } VCircleEvent VCE = VNode.CircleCheckDataNode(VD, VE.Y); if (VCE != null) { PQ.Push(VCE); CurrentCircles[VD] = VCE; } } if (VE is VDataEvent) { Vector DP = ((VDataEvent)VE).DataPoint; foreach (VCircleEvent VCE in CurrentCircles.Values) { if (MathTools.Dist(DP[0], DP[1], VCE.Center[0], VCE.Center[1]) < VCE.Y - VCE.Center[1] && Math.Abs(MathTools.Dist(DP[0], DP[1], VCE.Center[0], VCE.Center[1]) - (VCE.Y - VCE.Center[1])) > 1e-10) { VCE.Valid = false; } } } } VNode.CleanUpTree(RootNode); foreach (VoronoiEdge VE in VG.Edges) { if (VE.Done) { continue; } if (VE.VVertexB == Fortune.VVUnkown) { VE.AddVertex(Fortune.VVInfinite); if (Math.Abs(VE.LeftData[1] - VE.RightData[1]) < 1e-10 && VE.LeftData[0] < VE.RightData[0]) { Vector T = VE.LeftData; VE.LeftData = VE.RightData; VE.RightData = T; } } } ArrayList MinuteEdges = new ArrayList(); foreach (VoronoiEdge VE in VG.Edges) { if (!VE.IsPartlyInfinite && VE.VVertexA.Equals(VE.VVertexB)) { MinuteEdges.Add(VE); // prevent rounding errors from expanding to holes foreach (VoronoiEdge VE2 in VG.Edges) { if (VE2.VVertexA.Equals(VE.VVertexA)) { VE2.VVertexA = VE.VVertexA; } if (VE2.VVertexB.Equals(VE.VVertexA)) { VE2.VVertexB = VE.VVertexA; } } } } foreach (VoronoiEdge VE in MinuteEdges) { VG.Edges.Remove(VE); } return(VG); }
private void GenerateRelations(Vector[] points, VoronoiGraph voronoi) { centers.Clear(); corners.Clear(); edges.Clear(); var centerMap = new Dictionary <Vector, Center>(); var cornerMap = new Dictionary <Vector, Corner>(); var edgeMap = new Dictionary <VoronoiEdge, Edge>(); foreach (var point in points) { centerMap.Add(point, new Center(new Vec2((float)point[0], (float)point[1]), centerIds++)); } foreach (var point in voronoi.Vertizes) { cornerMap.Add(point, new Corner(new Vec2((float)point[0], (float)point[1]), cornerIds++)); } foreach (var edge in voronoi.Edges) { if (edge.IsPartlyInfinite || edge.VVertexA == Fortune.VVUnkown || edge.VVertexB == Fortune.VVUnkown) { continue; } var newEdge = new Edge(edgeIds++); edgeMap.Add(edge, newEdge); newEdge.d0 = centerMap[edge.LeftData]; newEdge.d0.borders.Add(newEdge); newEdge.d1 = centerMap[edge.RightData]; newEdge.d1.borders.Add(newEdge); newEdge.d0.neighbors.Add(newEdge.d1); newEdge.d1.neighbors.Add(newEdge.d0); newEdge.v0 = cornerMap[edge.VVertexA]; newEdge.v0.protrudes.Add(newEdge); newEdge.v0.touches.Add(newEdge.d0); newEdge.v0.touches.Add(newEdge.d1); newEdge.v1 = cornerMap[edge.VVertexB]; newEdge.v1.protrudes.Add(newEdge); newEdge.v1.touches.Add(newEdge.d0); newEdge.v1.touches.Add(newEdge.d1); newEdge.v0.adjacent.Add(newEdge.v1); newEdge.v1.adjacent.Add(newEdge.v0); newEdge.d0.corners.Add(newEdge.v0); newEdge.d0.corners.Add(newEdge.v1); newEdge.d1.corners.Add(newEdge.v0); newEdge.d1.corners.Add(newEdge.v1); } centers.AddRange(centerMap.Values); edges.AddRange(edgeMap.Values); corners.AddRange(cornerMap.Values); }
public static VNode ProcessCircleEvent(VCircleEvent e, VNode Root, VoronoiGraph VG, double ys, out VDataNode[] CircleCheckList) { VDataNode a, b, c; VEdgeNode eu, eo; b = e.NodeN; a = VNode.LeftDataNode(b); c = VNode.RightDataNode(b); if (a == null || b.Parent == null || c == null || !a.DataPoint.Equals(e.NodeL.DataPoint) || !c.DataPoint.Equals(e.NodeR.DataPoint)) { CircleCheckList = new VDataNode[] {}; return(Root); // Abbruch da sich der Graph verändert hat } eu = (VEdgeNode)b.Parent; CircleCheckList = new VDataNode[] { a, c }; //1. Create the new Vertex Vector VNew = new Vector(e.Center[0], e.Center[1]); // VNew[0] = Fortune.ParabolicCut(a.DataPoint[0],a.DataPoint[1],c.DataPoint[0],c.DataPoint[1],ys); // VNew[1] = (ys + a.DataPoint[1])/2 - 1/(2*(ys-a.DataPoint[1]))*(VNew[0]-a.DataPoint[0])*(VNew[0]-a.DataPoint[0]); VG.Vertizes.Add(VNew); //2. Find out if a or c are in a distand part of the tree (the other is then b's sibling) and assign the new vertex if (eu.Left == b) // c is sibling { eo = VNode.EdgeToRightDataNode(a); // replace eu by eu's Right eu.Parent.Replace(eu, eu.Right); } else // a is sibling { eo = VNode.EdgeToRightDataNode(b); // replace eu by eu's Left eu.Parent.Replace(eu, eu.Left); } eu.Edge.AddVertex(VNew); // ///////////////////// uncertain // if(eo==eu) // return Root; // ///////////////////// //complete & cleanup eo eo.Edge.AddVertex(VNew); //while(eo.Edge.VVertexB == Fortune.VVUnkown) //{ // eo.Flipped = !eo.Flipped; // eo.Edge.AddVertex(Fortune.VVInfinite); //} //if(eo.Flipped) //{ // Vector T = eo.Edge.LeftData; // eo.Edge.LeftData = eo.Edge.RightData; // eo.Edge.RightData = T; //} //2. Replace eo by new Edge VoronoiEdge VE = new VoronoiEdge(); VE.LeftData = a.DataPoint; VE.RightData = c.DataPoint; VE.AddVertex(VNew); VG.Edges.Add(VE); VEdgeNode VEN = new VEdgeNode(VE, false); VEN.Left = eo.Left; VEN.Right = eo.Right; if (eo.Parent == null) { return(VEN); } eo.Parent.Replace(eo, VEN); return(Root); }