// Get a reference to a physical shape. Create if it doesn't exist public static BSShape GetShapeReference(BSScene physicsScene, bool forceRebuild, BSPhysObject prim) { BSShape ret = null; if (prim.PreferredPhysicalShape == BSPhysicsShapeType.SHAPE_CAPSULE) { // an avatar capsule is close to a native shape (it is not shared) ret = BSShapeNative.GetReference(physicsScene, prim, BSPhysicsShapeType.SHAPE_CAPSULE, FixedShapeKey.KEY_CAPSULE); physicsScene.DetailLog("{0},BSShape.GetShapeReference,avatarCapsule,shape={1}", prim.LocalID, ret); } // Compound shapes are handled special as they are rebuilt from scratch. // This isn't too great a hardship since most of the child shapes will have already been created. if (ret == null && prim.PreferredPhysicalShape == BSPhysicsShapeType.SHAPE_COMPOUND) { // Getting a reference to a compound shape gets you the compound shape with the root prim shape added ret = BSShapeCompound.GetReference(prim); physicsScene.DetailLog("{0},BSShapeCollection.CreateGeom,compoundShape,shape={1}", prim.LocalID, ret); } // Avatars have their own unique shape if (ret == null && prim.PreferredPhysicalShape == BSPhysicsShapeType.SHAPE_AVATAR) { // Getting a reference to a compound shape gets you the compound shape with the root prim shape added ret = BSShapeAvatar.GetReference(prim); physicsScene.DetailLog("{0},BSShapeCollection.CreateGeom,avatarShape,shape={1}", prim.LocalID, ret); } if (ret == null) ret = GetShapeReferenceNonSpecial(physicsScene, forceRebuild, prim); return ret; }
// Get a reference to a physical shape. Create if it doesn't exist public static BSShape GetShapeReference(BSScene physicsScene, bool forceRebuild, BSPhysObject prim) { BSShape ret = null; if (prim.PreferredPhysicalShape == BSPhysicsShapeType.SHAPE_CAPSULE) { // an avatar capsule is close to a native shape (it is not shared) ret = BSShapeNative.GetReference(physicsScene, prim, BSPhysicsShapeType.SHAPE_CAPSULE, FixedShapeKey.KEY_CAPSULE); physicsScene.DetailLog("{0},BSShape.GetShapeReference,avatarCapsule,shape={1}", prim.LocalID, ret); } // Compound shapes are handled special as they are rebuilt from scratch. // This isn't too great a hardship since most of the child shapes will have already been created. if (ret == null && prim.PreferredPhysicalShape == BSPhysicsShapeType.SHAPE_COMPOUND) { // Getting a reference to a compound shape gets you the compound shape with the root prim shape added ret = BSShapeCompound.GetReference(prim); physicsScene.DetailLog("{0},BSShapeCollection.CreateGeom,compoundShape,shape={1}", prim.LocalID, ret); } // Avatars have their own unique shape if (ret == null && prim.PreferredPhysicalShape == BSPhysicsShapeType.SHAPE_AVATAR) { // Getting a reference to a compound shape gets you the compound shape with the root prim shape added ret = BSShapeAvatar.GetReference(prim); physicsScene.DetailLog("{0},BSShapeCollection.CreateGeom,avatarShape,shape={1}", prim.LocalID, ret); } if (ret == null) { ret = GetShapeReferenceNonSpecial(physicsScene, forceRebuild, prim); } return(ret); }
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2(). // Version that handles magnification. // Return 'true' if successfully created. public static bool ConvertHeightmapToMesh2(BSScene physicsScene, float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap int magnification, // number of vertices per heighmap step Vector3 extent, // dimensions of the output mesh Vector3 extentBase, // base to be added to all vertices out int indicesCountO, out int[] indicesO, out int verticesCountO, out float[] verticesO) { bool ret = false; int indicesCount = 0; int verticesCount = 0; int[] indices = new int[0]; float[] vertices = new float[0]; HeightMapGetter hmap = new HeightMapGetter(heightMap, sizeX, sizeY); // The vertices dimension of the output mesh int meshX = sizeX * magnification; int meshY = sizeY * magnification; // The output size of one mesh step float meshXStep = extent.X / meshX; float meshYStep = extent.Y / meshY; // Create an array of vertices that is meshX+1 by meshY+1 (note the loop // from zero to <= meshX). The triangle indices are then generated as two triangles // per heightmap point. There are meshX by meshY of these squares. The extra row and // column of vertices are used to complete the triangles of the last row and column // of the heightmap. try { // Vertices for the output heightmap plus one on the side and bottom to complete triangles int totalVertices = (meshX + 1) * (meshY + 1); vertices = new float[totalVertices * 3]; int totalIndices = meshX * meshY * 6; indices = new int[totalIndices]; if (physicsScene != null) { physicsScene.DetailLog( "{0},BSTerrainMesh.ConvertHeightMapToMesh2,inSize={1},outSize={2},totVert={3},totInd={4},extentBase={5}", BSScene.DetailLogZero, new Vector2(sizeX, sizeY), new Vector2(meshX, meshY), totalVertices, totalIndices, extentBase); } float minHeight = float.MaxValue; // Note that sizeX+1 vertices are created since there is land between this and the next region. // Loop through the output vertices and compute the mediun height in between the input vertices for (int yy = 0; yy <= meshY; yy++) { for (int xx = 0; xx <= meshX; xx++) // Hint: the "<=" means we go around sizeX + 1 times { float offsetY = (float)yy * (float)sizeY / (float)meshY; // The Y that is closest to the mesh point int stepY = (int)offsetY; float fractionalY = offsetY - (float)stepY; float offsetX = (float)xx * (float)sizeX / (float)meshX; // The X that is closest to the mesh point int stepX = (int)offsetX; float fractionalX = offsetX - (float)stepX; // physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,xx={1},yy={2},offX={3},stepX={4},fractX={5},offY={6},stepY={7},fractY={8}", // BSScene.DetailLogZero, xx, yy, offsetX, stepX, fractionalX, offsetY, stepY, fractionalY); // get the four corners of the heightmap square the mesh point is in float heightUL = hmap.GetHeight(stepX, stepY); float heightUR = hmap.GetHeight(stepX + 1, stepY); float heightLL = hmap.GetHeight(stepX, stepY + 1); float heightLR = hmap.GetHeight(stepX + 1, stepY + 1); // bilinear interplolation float height = heightUL * (1 - fractionalX) * (1 - fractionalY) + heightUR * fractionalX * (1 - fractionalY) + heightLL * (1 - fractionalX) * fractionalY + heightLR * fractionalX * fractionalY; // physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,heightUL={1},heightUR={2},heightLL={3},heightLR={4},heightMap={5}", // BSScene.DetailLogZero, heightUL, heightUR, heightLL, heightLR, height); minHeight = Math.Min(minHeight, height); vertices[verticesCount + 0] = (float)xx * meshXStep + extentBase.X; vertices[verticesCount + 1] = (float)yy * meshYStep + extentBase.Y; vertices[verticesCount + 2] = height + extentBase.Z; verticesCount += 3; } } // The number of vertices generated verticesCount /= 3; // Loop through all the heightmap squares and create indices for the two triangles for that square for (int yy = 0; yy < meshY; yy++) { for (int xx = 0; xx < meshX; xx++) { int offset = yy * (meshX + 1) + xx; // Each vertices is presumed to be the upper left corner of a box of two triangles indices[indicesCount + 0] = offset; indices[indicesCount + 1] = offset + 1; indices[indicesCount + 2] = offset + meshX + 1; // accounting for the extra column indices[indicesCount + 3] = offset + 1; indices[indicesCount + 4] = offset + meshX + 2; indices[indicesCount + 5] = offset + meshX + 1; indicesCount += 6; } } ret = true; } catch (Exception e) { if (physicsScene != null) { physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}", LogHeader, physicsScene.RegionName, extentBase, e); } } indicesCountO = indicesCount; indicesO = indices; verticesCountO = verticesCount; verticesO = vertices; return(ret); }
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2(). // Return 'true' if successfully created. public static bool ConvertHeightmapToMesh(BSScene physicsScene, float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap Vector3 extentBase, // base to be added to all vertices out int indicesCountO, out int[] indicesO, out int verticesCountO, out float[] verticesO) { bool ret = false; int indicesCount = 0; int verticesCount = 0; int[] indices = new int[0]; float[] vertices = new float[0]; // Simple mesh creation which assumes magnification == 1. // TODO: do a more general solution that scales, adds new vertices and smoothes the result. // Create an array of vertices that is sizeX+1 by sizeY+1 (note the loop // from zero to <= sizeX). The triangle indices are then generated as two triangles // per heightmap point. There are sizeX by sizeY of these squares. The extra row and // column of vertices are used to complete the triangles of the last row and column // of the heightmap. try { // One vertice per heightmap value plus the vertices off the side and bottom edge. int totalVertices = (sizeX + 1) * (sizeY + 1); vertices = new float[totalVertices * 3]; int totalIndices = sizeX * sizeY * 6; indices = new int[totalIndices]; if (physicsScene != null) { physicsScene.DetailLog( "{0},BSTerrainMesh.ConvertHeightMapToMesh,totVert={1},totInd={2},extentBase={3}", BSScene.DetailLogZero, totalVertices, totalIndices, extentBase); } float minHeight = float.MaxValue; // Note that sizeX+1 vertices are created since there is land between this and the next region. for (int yy = 0; yy <= sizeY; yy++) { for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we go around sizeX + 1 times { int offset = yy * sizeX + xx; // Extend the height with the height from the last row or column if (yy == sizeY) { offset -= sizeX; } if (xx == sizeX) { offset -= 1; } float height = heightMap[offset]; minHeight = Math.Min(minHeight, height); vertices[verticesCount + 0] = (float)xx + extentBase.X; vertices[verticesCount + 1] = (float)yy + extentBase.Y; vertices[verticesCount + 2] = height + extentBase.Z; verticesCount += 3; } } verticesCount = verticesCount / 3; for (int yy = 0; yy < sizeY; yy++) { for (int xx = 0; xx < sizeX; xx++) { int offset = yy * (sizeX + 1) + xx; // Each vertices is presumed to be the upper left corner of a box of two triangles indices[indicesCount + 0] = offset; indices[indicesCount + 1] = offset + 1; indices[indicesCount + 2] = offset + sizeX + 1; // accounting for the extra column indices[indicesCount + 3] = offset + 1; indices[indicesCount + 4] = offset + sizeX + 2; indices[indicesCount + 5] = offset + sizeX + 1; indicesCount += 6; } } ret = true; } catch (Exception e) { if (physicsScene != null) { physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}", LogHeader, physicsScene.RegionName, extentBase, e); } } indicesCountO = indicesCount; indicesO = indices; verticesCountO = verticesCount; verticesO = vertices; return(ret); }
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2(). // Version that handles magnification. // Return 'true' if successfully created. public static bool ConvertHeightmapToMesh2(BSScene physicsScene, float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap int magnification, // number of vertices per heighmap step Vector3 extent, // dimensions of the output mesh Vector3 extentBase, // base to be added to all vertices out int indicesCountO, out int[] indicesO, out int verticesCountO, out float[] verticesO) { bool ret = false; int indicesCount = 0; int verticesCount = 0; int[] indices = new int[0]; float[] vertices = new float[0]; HeightMapGetter hmap = new HeightMapGetter(heightMap, sizeX, sizeY); // The vertices dimension of the output mesh int meshX = sizeX * magnification; int meshY = sizeY * magnification; // The output size of one mesh step float meshXStep = extent.X / meshX; float meshYStep = extent.Y / meshY; // Create an array of vertices that is meshX+1 by meshY+1 (note the loop // from zero to <= meshX). The triangle indices are then generated as two triangles // per heightmap point. There are meshX by meshY of these squares. The extra row and // column of vertices are used to complete the triangles of the last row and column // of the heightmap. try { // Vertices for the output heightmap plus one on the side and bottom to complete triangles int totalVertices = (meshX + 1) * (meshY + 1); vertices = new float[totalVertices * 3]; int totalIndices = meshX * meshY * 6; indices = new int[totalIndices]; if (physicsScene != null) physicsScene.DetailLog( "{0},BSTerrainMesh.ConvertHeightMapToMesh2,inSize={1},outSize={2},totVert={3},totInd={4},extentBase={5}", BSScene.DetailLogZero, new Vector2(sizeX, sizeY), new Vector2(meshX, meshY), totalVertices, totalIndices, extentBase); float minHeight = float.MaxValue; // Note that sizeX+1 vertices are created since there is land between this and the next region. // Loop through the output vertices and compute the mediun height in between the input vertices for (int yy = 0; yy <= meshY; yy++) { for (int xx = 0; xx <= meshX; xx++) // Hint: the "<=" means we go around sizeX + 1 times { float offsetY = (float)yy * (float)sizeY / (float)meshY; // The Y that is closest to the mesh point int stepY = (int)offsetY; float fractionalY = offsetY - (float)stepY; float offsetX = (float)xx * (float)sizeX / (float)meshX; // The X that is closest to the mesh point int stepX = (int)offsetX; float fractionalX = offsetX - (float)stepX; // physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,xx={1},yy={2},offX={3},stepX={4},fractX={5},offY={6},stepY={7},fractY={8}", // BSScene.DetailLogZero, xx, yy, offsetX, stepX, fractionalX, offsetY, stepY, fractionalY); // get the four corners of the heightmap square the mesh point is in float heightUL = hmap.GetHeight(stepX, stepY); float heightUR = hmap.GetHeight(stepX + 1, stepY); float heightLL = hmap.GetHeight(stepX, stepY + 1); float heightLR = hmap.GetHeight(stepX + 1, stepY + 1); // bilinear interplolation float height = heightUL * (1 - fractionalX) * (1 - fractionalY) + heightUR * fractionalX * (1 - fractionalY) + heightLL * (1 - fractionalX) * fractionalY + heightLR * fractionalX * fractionalY; // physicsScene.DetailLog("{0},BSTerrainMesh.ConvertHeightMapToMesh2,heightUL={1},heightUR={2},heightLL={3},heightLR={4},heightMap={5}", // BSScene.DetailLogZero, heightUL, heightUR, heightLL, heightLR, height); minHeight = Math.Min(minHeight, height); vertices[verticesCount + 0] = (float)xx * meshXStep + extentBase.X; vertices[verticesCount + 1] = (float)yy * meshYStep + extentBase.Y; vertices[verticesCount + 2] = height + extentBase.Z; verticesCount += 3; } } // The number of vertices generated verticesCount /= 3; // Loop through all the heightmap squares and create indices for the two triangles for that square for (int yy = 0; yy < meshY; yy++) { for (int xx = 0; xx < meshX; xx++) { int offset = yy * (meshX + 1) + xx; // Each vertices is presumed to be the upper left corner of a box of two triangles indices[indicesCount + 0] = offset; indices[indicesCount + 1] = offset + 1; indices[indicesCount + 2] = offset + meshX + 1; // accounting for the extra column indices[indicesCount + 3] = offset + 1; indices[indicesCount + 4] = offset + meshX + 2; indices[indicesCount + 5] = offset + meshX + 1; indicesCount += 6; } } ret = true; } catch (Exception e) { if (physicsScene != null) physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}", LogHeader, physicsScene.RegionName, extentBase, e); } indicesCountO = indicesCount; indicesO = indices; verticesCountO = verticesCount; verticesO = vertices; return ret; }
// Convert the passed heightmap to mesh information suitable for CreateMeshShape2(). // Return 'true' if successfully created. public static bool ConvertHeightmapToMesh(BSScene physicsScene, float[] heightMap, int sizeX, int sizeY, // parameters of incoming heightmap Vector3 extentBase, // base to be added to all vertices out int indicesCountO, out int[] indicesO, out int verticesCountO, out float[] verticesO) { bool ret = false; int indicesCount = 0; int verticesCount = 0; int[] indices = new int[0]; float[] vertices = new float[0]; // Simple mesh creation which assumes magnification == 1. // TODO: do a more general solution that scales, adds new vertices and smoothes the result. // Create an array of vertices that is sizeX+1 by sizeY+1 (note the loop // from zero to <= sizeX). The triangle indices are then generated as two triangles // per heightmap point. There are sizeX by sizeY of these squares. The extra row and // column of vertices are used to complete the triangles of the last row and column // of the heightmap. try { // One vertice per heightmap value plus the vertices off the side and bottom edge. int totalVertices = (sizeX + 1) * (sizeY + 1); vertices = new float[totalVertices * 3]; int totalIndices = sizeX * sizeY * 6; indices = new int[totalIndices]; if (physicsScene != null) physicsScene.DetailLog( "{0},BSTerrainMesh.ConvertHeightMapToMesh,totVert={1},totInd={2},extentBase={3}", BSScene.DetailLogZero, totalVertices, totalIndices, extentBase); float minHeight = float.MaxValue; // Note that sizeX+1 vertices are created since there is land between this and the next region. for (int yy = 0; yy <= sizeY; yy++) { for (int xx = 0; xx <= sizeX; xx++) // Hint: the "<=" means we go around sizeX + 1 times { int offset = yy * sizeX + xx; // Extend the height with the height from the last row or column if (yy == sizeY) offset -= sizeX; if (xx == sizeX) offset -= 1; float height = heightMap[offset]; minHeight = Math.Min(minHeight, height); vertices[verticesCount + 0] = (float)xx + extentBase.X; vertices[verticesCount + 1] = (float)yy + extentBase.Y; vertices[verticesCount + 2] = height + extentBase.Z; verticesCount += 3; } } verticesCount = verticesCount / 3; for (int yy = 0; yy < sizeY; yy++) { for (int xx = 0; xx < sizeX; xx++) { int offset = yy * (sizeX + 1) + xx; // Each vertices is presumed to be the upper left corner of a box of two triangles indices[indicesCount + 0] = offset; indices[indicesCount + 1] = offset + 1; indices[indicesCount + 2] = offset + sizeX + 1; // accounting for the extra column indices[indicesCount + 3] = offset + 1; indices[indicesCount + 4] = offset + sizeX + 2; indices[indicesCount + 5] = offset + sizeX + 1; indicesCount += 6; } } ret = true; } catch (Exception e) { if (physicsScene != null) physicsScene.Logger.ErrorFormat("{0} Failed conversion of heightmap to mesh. For={1}/{2}, e={3}", LogHeader, physicsScene.RegionName, extentBase, e); } indicesCountO = indicesCount; indicesO = indices; verticesCountO = verticesCount; verticesO = vertices; return ret; }