コード例 #1
0
        public void SquareMatrixNotInvertable()
        {
            SquareMatrix A = new SquareMatrix(2);

            A[1, 1] = 1.0;

            // Inverting should throw
            try {
                A.Inverse();
                Assert.IsTrue(false);
            } catch (DivideByZeroException) {
            }

            // LU Decomposing should throw
            try {
                A.LUDecomposition();
                Assert.IsTrue(false);
            } catch (DivideByZeroException) {
            }

            // SVD should succeed, and give infinite condition number
            SingularValueDecomposition SVD = A.SingularValueDecomposition();

            Assert.IsTrue(Double.IsInfinity(SVD.ConditionNumber));
        }
コード例 #2
0
        public void SquareRandomMatrixLUDecomposition()
        {
            for (int d = 1; d <= 256; d += 11)
            {
                SquareMatrix M = CreateSquareRandomMatrix(d);

                // LU decompose the matrix
                //Stopwatch sw = Stopwatch.StartNew();
                LUDecomposition LU = M.LUDecomposition();
                //sw.Stop();
                //Console.WriteLine(sw.ElapsedMilliseconds);

                Assert.IsTrue(LU.Dimension == d);

                // test that the decomposition works
                SquareMatrix P = LU.PMatrix();
                SquareMatrix L = LU.LMatrix();
                SquareMatrix U = LU.UMatrix();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(P * M, L * U));

                // check that the inverse works
                SquareMatrix MI = LU.Inverse();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(M * MI, UnitMatrix.OfDimension(d)));

                // test that a solution works
                ColumnVector t = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    t[i] = i;
                }
                ColumnVector s = LU.Solve(t);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(M * s, t));
            }
        }
コード例 #3
0
 public void SquareUnitMatrixLUDecomposition()
 {
     for (int d = 1; d <= 10; d++)
     {
         SquareMatrix I = UnitMatrix.OfDimension(d).ToSquareMatrix();
         Assert.IsTrue(I.Trace() == d);
         LUDecomposition LU = I.LUDecomposition();
         Assert.IsTrue(LU.Determinant() == 1.0);
         SquareMatrix II = LU.Inverse();
         Assert.IsTrue(TestUtilities.IsNearlyEqual(II, I));
     }
 }
コード例 #4
0
        public void SquareVandermondeMatrixLUDecomposition()
        {
            // fails now for d = 8 because determinant slightly off
            for (int d = 1; d <= 7; d++)
            {
                Console.WriteLine("d={0}", d);

                double[] x = new double[d];
                for (int i = 0; i < d; i++)
                {
                    x[i] = i;
                }
                double det = 1.0;
                for (int i = 0; i < d; i++)
                {
                    for (int j = 0; j < i; j++)
                    {
                        det = det * (x[i] - x[j]);
                    }
                }

                // LU decompose the matrix
                SquareMatrix    V  = CreateVandermondeMatrix(d);
                LUDecomposition LU = V.LUDecomposition();

                // test that the decomposition works
                SquareMatrix P = LU.PMatrix();
                SquareMatrix L = LU.LMatrix();
                SquareMatrix U = LU.UMatrix();
                Assert.IsTrue(TestUtilities.IsNearlyEqual(P * V, L * U));

                // check that the determinant agrees with the analytic expression
                Console.WriteLine("det {0} {1}", LU.Determinant(), det);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(LU.Determinant(), det));

                // check that the inverse works
                SquareMatrix VI = LU.Inverse();
                //PrintMatrix(VI);
                //PrintMatrix(V * VI);
                SquareMatrix I = TestUtilities.CreateSquareUnitMatrix(d);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V * VI, I));

                // test that a solution works
                ColumnVector t = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    t[i] = 1.0;
                }
                ColumnVector s = LU.Solve(t);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V * s, t));
            }
        }
コード例 #5
0
        public void SparseSquareMatrixSolutionAgreement()
        {
            Random rng = new Random(2);

            int n = 16;
            //for (int n = 8; n < 100; n+= 11) {

            // create dense and sparse matrices with the same entries
            SquareMatrix       M = new SquareMatrix(n);
            SparseSquareMatrix S = new SparseSquareMatrix(n);

            for (int r = 0; r < n; r++)
            {
                for (int c = 0; c < n; c++)
                {
                    if (rng.NextDouble() < 0.5)
                    {
                        M[r, c] = rng.NextDouble();
                        S[r, c] = M[r, c];
                    }
                }
            }

            // pick a RHS
            ColumnVector b = new ColumnVector(n);

            for (int i = 0; i < n; i++)
            {
                b[i] = rng.NextDouble();
            }

            // solve each
            ColumnVector Mx = M.LUDecomposition().Solve(b);
            ColumnVector Sx = S.Solve(b);

            // the solutions should be the same
            Assert.IsTrue(TestUtilities.IsNearlyEqual(Mx, Sx, TestUtilities.TargetPrecision * 100.0));

            //}
        }