//Transform the convex into the space of something else. /// <summary> /// Gets the bounding box of the convex shape transformed first into world space, and then into the local space of another affine transform. /// </summary> /// <param name="shapeTransform">Transform to use to put the shape into world space.</param> /// <param name="spaceTransform">Used as the frame of reference to compute the bounding box. /// In effect, the shape is transformed by the inverse of the space transform to compute its bounding box in local space.</param> /// <param name="boundingBox">Bounding box in the local space.</param> public void GetLocalBoundingBox(ref RigidTransform shapeTransform, ref AffineTransform spaceTransform, out BoundingBox boundingBox) { #if !WINDOWS boundingBox = new BoundingBox(); #endif //TODO: This method peforms quite a few sqrts because the collision margin can get scaled, and so cannot be applied as a final step. //There should be a better way to do this. At the very least, it should be possible to avoid the 6 square roots involved currently. //If this shows a a bottleneck, it might be best to virtualize this function and implement a per-shape variant. //Also... It might be better just to have the internal function be a GetBoundingBox that takes an AffineTransform, and an outer function //does the local space fiddling. //Move forward into convex's space, backwards into the new space's local space. AffineTransform transform; AffineTransform.Invert(ref spaceTransform, out transform); AffineTransform.Multiply(ref shapeTransform, ref transform, out transform); //Sample the local directions from the orientation matrix, implicitly transposed. Vector3 right; var direction = new Vector3(transform.LinearTransform.M11, transform.LinearTransform.M21, transform.LinearTransform.M31); GetLocalExtremePoint(direction, out right); Vector3 left; direction = new Vector3(-transform.LinearTransform.M11, -transform.LinearTransform.M21, -transform.LinearTransform.M31); GetLocalExtremePoint(direction, out left); Vector3 up; direction = new Vector3(transform.LinearTransform.M12, transform.LinearTransform.M22, transform.LinearTransform.M32); GetLocalExtremePoint(direction, out up); Vector3 down; direction = new Vector3(-transform.LinearTransform.M12, -transform.LinearTransform.M22, -transform.LinearTransform.M32); GetLocalExtremePoint(direction, out down); Vector3 backward; direction = new Vector3(transform.LinearTransform.M13, transform.LinearTransform.M23, transform.LinearTransform.M33); GetLocalExtremePoint(direction, out backward); Vector3 forward; direction = new Vector3(-transform.LinearTransform.M13, -transform.LinearTransform.M23, -transform.LinearTransform.M33); GetLocalExtremePoint(direction, out forward); //Rather than transforming each axis independently (and doing three times as many operations as required), just get the 6 required values directly. Vector3 positive, negative; TransformLocalExtremePoints(ref right, ref up, ref backward, ref transform.LinearTransform, out positive); TransformLocalExtremePoints(ref left, ref down, ref forward, ref transform.LinearTransform, out negative); //The positive and negative vectors represent the X, Y and Z coordinates of the extreme points in world space along the world space axes. boundingBox.Max.X = transform.Translation.X + positive.X; boundingBox.Max.Y = transform.Translation.Y + positive.Y; boundingBox.Max.Z = transform.Translation.Z + positive.Z; boundingBox.Min.X = transform.Translation.X + negative.X; boundingBox.Min.Y = transform.Translation.Y + negative.Y; boundingBox.Min.Z = transform.Translation.Z + negative.Z; }
///<summary> /// Tests a ray against the instance. ///</summary> ///<param name="ray">Ray to test.</param> ///<param name="maximumLength">Maximum length of the ray to test; in units of the ray's direction's length.</param> ///<param name="sidedness">Sidedness to use during the ray cast. This does not have to be the same as the mesh's sidedness.</param> ///<param name="rayHit">The hit location of the ray on the mesh, if any.</param> ///<returns>Whether or not the ray hit the mesh.</returns> public bool RayCast(Ray ray, float maximumLength, TriangleSidedness sidedness, out RayHit rayHit) { //Put the ray into local space. Ray localRay; AffineTransform inverse; AffineTransform.Invert(ref worldTransform, out inverse); Matrix3x3.Transform(ref ray.Direction, ref inverse.LinearTransform, out localRay.Direction); AffineTransform.Transform(ref ray.Position, ref inverse, out localRay.Position); if (Shape.TriangleMesh.RayCast(localRay, maximumLength, sidedness, out rayHit)) { //Transform the hit into world space. Vector3.Multiply(ref ray.Direction, rayHit.T, out rayHit.Location); Vector3.Add(ref rayHit.Location, ref ray.Position, out rayHit.Location); Matrix3x3.TransformTranspose(ref rayHit.Normal, ref inverse.LinearTransform, out rayHit.Normal); return(true); } rayHit = new RayHit(); return(false); }
/// <summary> /// Gets the bounding box of the mesh transformed first into world space, and then into the local space of another affine transform. /// </summary> /// <param name="shapeTransform">Transform to use to put the shape into world space.</param> /// <param name="spaceTransform">Used as the frame of reference to compute the bounding box. /// In effect, the shape is transformed by the inverse of the space transform to compute its bounding box in local space.</param> /// <param name="boundingBox">Bounding box in the local space.</param> public void GetLocalBoundingBox(ref RigidTransform shapeTransform, ref AffineTransform spaceTransform, out BoundingBox boundingBox) { #if !WINDOWS boundingBox = new BoundingBox(); #endif //TODO: This method peforms quite a few sqrts because the collision margin can get scaled, and so cannot be applied as a final step. //There should be a better way to do this. //Additionally, this bounding box is not consistent in all cases with the post-add version. Adding the collision margin at the end can //slightly overestimate the size of a margin expanded shape at the corners, which is fine (and actually important for the box-box special case). //Move forward into convex's space, backwards into the new space's local space. AffineTransform transform; AffineTransform.Invert(ref spaceTransform, out transform); AffineTransform.Multiply(ref shapeTransform, ref transform, out transform); GetBoundingBox(ref transform.LinearTransform, out boundingBox); boundingBox.Max.X += transform.Translation.X; boundingBox.Max.Y += transform.Translation.Y; boundingBox.Max.Z += transform.Translation.Z; boundingBox.Min.X += transform.Translation.X; boundingBox.Min.Y += transform.Translation.Y; boundingBox.Min.Z += transform.Translation.Z; }
///<summary> /// Tests a ray against the terrain shape. ///</summary> ///<param name="ray">Ray to test against the shape.</param> ///<param name="maximumLength">Maximum length of the ray in units of the ray direction's length.</param> ///<param name="transform">Transform to apply to the terrain shape during the test.</param> ///<param name="sidedness">Sidedness of the triangles to use when raycasting.</param> ///<param name="hit">Hit data of the ray cast, if any.</param> ///<returns>Whether or not the ray hit the transformed terrain shape.</returns> public bool RayCast(ref Ray ray, float maximumLength, ref AffineTransform transform, TriangleSidedness sidedness, out RayHit hit) { hit = new RayHit(); //Put the ray into local space. Ray localRay; AffineTransform inverse; AffineTransform.Invert(ref transform, out inverse); Matrix3x3.Transform(ref ray.Direction, ref inverse.LinearTransform, out localRay.Direction); AffineTransform.Transform(ref ray.Position, ref inverse, out localRay.Position); //Use rasterizey traversal. //The origin is at 0,0,0 and the map goes +X, +Y, +Z. //if it's before the origin and facing away, or outside the max and facing out, early out. float maxX = heights.GetLength(0) - 1; float maxZ = heights.GetLength(1) - 1; Vector3 progressingOrigin = localRay.Position; float distance = 0; //Check the outside cases first. if (progressingOrigin.X < 0) { if (localRay.Direction.X > 0) { //Off the left side. float timeToMinX = -progressingOrigin.X / localRay.Direction.X; distance += timeToMinX; Vector3 increment; Vector3.Multiply(ref localRay.Direction, timeToMinX, out increment); Vector3.Add(ref increment, ref progressingOrigin, out progressingOrigin); } else { return(false); //Outside and pointing away from the terrain. } } else if (progressingOrigin.X > maxX) { if (localRay.Direction.X < 0) { //Off the left side. float timeToMinX = -(progressingOrigin.X - maxX) / localRay.Direction.X; distance += timeToMinX; Vector3 increment; Vector3.Multiply(ref localRay.Direction, timeToMinX, out increment); Vector3.Add(ref increment, ref progressingOrigin, out progressingOrigin); } else { return(false); //Outside and pointing away from the terrain. } } if (progressingOrigin.Z < 0) { if (localRay.Direction.Z > 0) { float timeToMinZ = -progressingOrigin.Z / localRay.Direction.Z; distance += timeToMinZ; Vector3 increment; Vector3.Multiply(ref localRay.Direction, timeToMinZ, out increment); Vector3.Add(ref increment, ref progressingOrigin, out progressingOrigin); } else { return(false); } } else if (progressingOrigin.Z > maxZ) { if (localRay.Direction.Z < 0) { float timeToMinZ = -(progressingOrigin.Z - maxZ) / localRay.Direction.Z; distance += timeToMinZ; Vector3 increment; Vector3.Multiply(ref localRay.Direction, timeToMinZ, out increment); Vector3.Add(ref increment, ref progressingOrigin, out progressingOrigin); } else { return(false); } } if (distance > maximumLength) { return(false); } //By now, we should be entering the main body of the terrain. int xCell = (int)progressingOrigin.X; int zCell = (int)progressingOrigin.Z; //If it's hitting the border and going in, then correct the index //so that it will initially target a valid quad. //Without this, a quad beyond the border would be tried and failed. if (xCell == heights.GetLength(0) - 1 && localRay.Direction.X < 0) { xCell = heights.GetLength(0) - 2; } if (zCell == heights.GetLength(1) - 1 && localRay.Direction.Z < 0) { zCell = heights.GetLength(1) - 2; } while (true) { //Check for a miss. if (xCell < 0 || zCell < 0 || xCell >= heights.GetLength(0) - 1 || zCell >= heights.GetLength(1) - 1) { return(false); } //Test the triangles of this cell. Vector3 v1, v2, v3, v4; // v3 v4 // v1 v2 GetLocalPosition(xCell, zCell, out v1); GetLocalPosition(xCell + 1, zCell, out v2); GetLocalPosition(xCell, zCell + 1, out v3); GetLocalPosition(xCell + 1, zCell + 1, out v4); RayHit hit1, hit2; bool didHit1; bool didHit2; //Don't bother doing ray intersection tests if the ray can't intersect it. float highest = v1.Y; float lowest = v1.Y; if (v2.Y > highest) { highest = v2.Y; } else if (v2.Y < lowest) { lowest = v2.Y; } if (v3.Y > highest) { highest = v3.Y; } else if (v3.Y < lowest) { lowest = v3.Y; } if (v4.Y > highest) { highest = v4.Y; } else if (v4.Y < lowest) { lowest = v4.Y; } if (!(progressingOrigin.Y > highest && localRay.Direction.Y > 0 || progressingOrigin.Y < lowest && localRay.Direction.Y < 0)) { if (quadTriangleOrganization == QuadTriangleOrganization.BottomLeftUpperRight) { //Always perform the raycast as if Y+ in local space is the way the triangles are facing. didHit1 = Toolbox.FindRayTriangleIntersection(ref localRay, maximumLength, sidedness, ref v1, ref v2, ref v3, out hit1); didHit2 = Toolbox.FindRayTriangleIntersection(ref localRay, maximumLength, sidedness, ref v2, ref v4, ref v3, out hit2); } else //if (quadTriangleOrganization == CollisionShapes.QuadTriangleOrganization.BottomRightUpperLeft) { didHit1 = Toolbox.FindRayTriangleIntersection(ref localRay, maximumLength, sidedness, ref v1, ref v2, ref v4, out hit1); didHit2 = Toolbox.FindRayTriangleIntersection(ref localRay, maximumLength, sidedness, ref v1, ref v4, ref v3, out hit2); } if (didHit1 && didHit2) { if (hit1.T < hit2.T) { Vector3.Multiply(ref ray.Direction, hit1.T, out hit.Location); Vector3.Add(ref hit.Location, ref ray.Position, out hit.Location); Matrix3x3.TransformTranspose(ref hit1.Normal, ref inverse.LinearTransform, out hit.Normal); hit.T = hit1.T; return(true); } Vector3.Multiply(ref ray.Direction, hit2.T, out hit.Location); Vector3.Add(ref hit.Location, ref ray.Position, out hit.Location); Matrix3x3.TransformTranspose(ref hit2.Normal, ref inverse.LinearTransform, out hit.Normal); hit.T = hit2.T; return(true); } else if (didHit1) { Vector3.Multiply(ref ray.Direction, hit1.T, out hit.Location); Vector3.Add(ref hit.Location, ref ray.Position, out hit.Location); Matrix3x3.TransformTranspose(ref hit1.Normal, ref inverse.LinearTransform, out hit.Normal); hit.T = hit1.T; return(true); } else if (didHit2) { Vector3.Multiply(ref ray.Direction, hit2.T, out hit.Location); Vector3.Add(ref hit.Location, ref ray.Position, out hit.Location); Matrix3x3.TransformTranspose(ref hit2.Normal, ref inverse.LinearTransform, out hit.Normal); hit.T = hit2.T; return(true); } } //Move to the next cell. float timeToX; if (localRay.Direction.X < 0) { timeToX = -(progressingOrigin.X - xCell) / localRay.Direction.X; } else if (localRay.Direction.X > 0) { timeToX = (xCell + 1 - progressingOrigin.X) / localRay.Direction.X; } else { timeToX = float.MaxValue; } float timeToZ; if (localRay.Direction.Z < 0) { timeToZ = -(progressingOrigin.Z - zCell) / localRay.Direction.Z; } else if (localRay.Direction.Z > 0) { timeToZ = (zCell + 1 - progressingOrigin.Z) / localRay.Direction.Z; } else { timeToZ = float.MaxValue; } //Move to the next cell. if (timeToX < timeToZ) { if (localRay.Direction.X < 0) { xCell--; } else { xCell++; } distance += timeToX; if (distance > maximumLength) { return(false); } Vector3 increment; Vector3.Multiply(ref localRay.Direction, timeToX, out increment); Vector3.Add(ref increment, ref progressingOrigin, out progressingOrigin); } else { if (localRay.Direction.Z < 0) { zCell--; } else { zCell++; } distance += timeToZ; if (distance > maximumLength) { return(false); } Vector3 increment; Vector3.Multiply(ref localRay.Direction, timeToZ, out increment); Vector3.Add(ref increment, ref progressingOrigin, out progressingOrigin); } } }