コード例 #1
0
        /// <summary>
        /// Find the minimum of the objective function given lower and upper bounds
        /// </summary>
        /// <param name="objective">The objective function, must support a gradient</param>
        /// <param name="lowerBound">The lower bound</param>
        /// <param name="upperBound">The upper bound</param>
        /// <param name="initialGuess">The initial guess</param>
        /// <returns>The MinimizationResult which contains the minimum and the ExitCondition</returns>
        public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector <double> lowerBound, Vector <double> upperBound, Vector <double> initialGuess)
        {
            _lowerBound = lowerBound;
            _upperBound = upperBound;
            if (!objective.IsGradientSupported)
            {
                throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for BFGS minimization.");
            }

            // Check that dimensions match
            if (lowerBound.Count != upperBound.Count || lowerBound.Count != initialGuess.Count)
            {
                throw new ArgumentException("Dimensions of bounds and/or initial guess do not match.");
            }

            // Check that initial guess is feasible
            for (int ii = 0; ii < initialGuess.Count; ++ii)
            {
                if (initialGuess[ii] < lowerBound[ii] || initialGuess[ii] > upperBound[ii])
                {
                    throw new ArgumentException("Initial guess is not in the feasible region");
                }
            }

            objective.EvaluateAt(initialGuess);
            ValidateGradientAndObjective(objective);

            // Check that we're not already done
            var currentExitCondition = ExitCriteriaSatisfied(objective, null, 0);

            if (currentExitCondition != ExitCondition.None)
            {
                return(new MinimizationResult(objective, 0, currentExitCondition));
            }

            // Set up line search algorithm
            var lineSearcher = new StrongWolfeLineSearch(1e-4, 0.9, Math.Max(ParameterTolerance, 1e-5), maxIterations: 1000);

            // Declare state variables
            Vector <double> reducedSolution1, reducedGradient, reducedInitialPoint, reducedCauchyPoint, solution1;
            Matrix <double> reducedHessian;
            List <int>      reducedMap;

            // First step
            var pseudoHessian = CreateMatrix.DiagonalIdentity <double>(initialGuess.Count);

            // Determine active set
            var gradientProjectionResult = QuadraticGradientProjectionSearch.Search(objective.Point, objective.Gradient, pseudoHessian, lowerBound, upperBound);
            var cauchyPoint = gradientProjectionResult.CauchyPoint;
            var fixedCount  = gradientProjectionResult.FixedCount;
            var isFixed     = gradientProjectionResult.IsFixed;
            var freeCount   = lowerBound.Count - fixedCount;

            if (freeCount > 0)
            {
                reducedGradient     = new DenseVector(freeCount);
                reducedHessian      = new DenseMatrix(freeCount, freeCount);
                reducedMap          = new List <int>(freeCount);
                reducedInitialPoint = new DenseVector(freeCount);
                reducedCauchyPoint  = new DenseVector(freeCount);

                CreateReducedData(objective.Point, cauchyPoint, isFixed, lowerBound, upperBound, objective.Gradient, pseudoHessian, reducedInitialPoint, reducedCauchyPoint, reducedGradient, reducedHessian, reducedMap);

                // Determine search direction and maximum step size
                reducedSolution1 = reducedInitialPoint + reducedHessian.Cholesky().Solve(-reducedGradient);

                solution1 = ReducedToFull(reducedMap, reducedSolution1, cauchyPoint);
            }
            else
            {
                solution1 = cauchyPoint;
            }

            var directionFromCauchy    = solution1 - cauchyPoint;
            var maxStepFromCauchyPoint = FindMaxStep(cauchyPoint, directionFromCauchy, lowerBound, upperBound);

            var solution2 = cauchyPoint + Math.Min(maxStepFromCauchyPoint, 1.0) * directionFromCauchy;

            var lineSearchDirection = solution2 - objective.Point;
            var maxLineSearchStep   = FindMaxStep(objective.Point, lineSearchDirection, lowerBound, upperBound);
            var estStepSize         = -objective.Gradient * lineSearchDirection / (lineSearchDirection * pseudoHessian * lineSearchDirection);

            var startingStepSize = Math.Min(Math.Max(estStepSize, 1.0), maxLineSearchStep);

            // Line search
            LineSearchResult lineSearchResult;

            try
            {
                lineSearchResult = lineSearcher.FindConformingStep(objective, lineSearchDirection, startingStepSize, upperBound: maxLineSearchStep);
            }
            catch (Exception e)
            {
                throw new InnerOptimizationException("Line search failed.", e);
            }

            var previousPoint  = objective.Fork();
            var candidatePoint = lineSearchResult.FunctionInfoAtMinimum;

            ValidateGradientAndObjective(candidatePoint);

            // Check that we're not done
            currentExitCondition = ExitCriteriaSatisfied(candidatePoint, previousPoint, 0);
            if (currentExitCondition != ExitCondition.None)
            {
                return(new MinimizationResult(candidatePoint, 0, currentExitCondition));
            }

            var gradient = candidatePoint.Gradient;
            var step     = candidatePoint.Point - initialGuess;

            // Subsequent steps
            int totalLineSearchSteps = lineSearchResult.Iterations;
            int iterationsWithNontrivialLineSearch = lineSearchResult.Iterations > 0 ? 0 : 1;

            int iterations = DoBfgsUpdate(ref currentExitCondition, lineSearcher, ref pseudoHessian, ref lineSearchDirection, ref previousPoint, ref lineSearchResult, ref candidatePoint, ref step, ref totalLineSearchSteps, ref iterationsWithNontrivialLineSearch);

            if (iterations == MaximumIterations && currentExitCondition == ExitCondition.None)
            {
                throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({MaximumIterations}) reached."));
            }

            return(new MinimizationWithLineSearchResult(candidatePoint, iterations, currentExitCondition, totalLineSearchSteps, iterationsWithNontrivialLineSearch));
        }
コード例 #2
0
        protected override Vector <double> CalculateSearchDirection(ref Matrix <double> pseudoHessian,
                                                                    out double maxLineSearchStep,
                                                                    out double startingStepSize,
                                                                    IObjectiveFunction previousPoint,
                                                                    IObjectiveFunction candidatePoint,
                                                                    Vector <double> step)
        {
            Vector <double> lineSearchDirection;
            var             y = candidatePoint.Gradient - previousPoint.Gradient;

            double sy = step * y;

            if (sy > 0.0) // only do update if it will create a positive definite matrix
            {
                double sts = step * step;

                var Hs  = pseudoHessian * step;
                var sHs = step * pseudoHessian * step;
                pseudoHessian = pseudoHessian + y.OuterProduct(y) * (1.0 / sy) - Hs.OuterProduct(Hs) * (1.0 / sHs);
            }
            else
            {
                //pseudo_hessian = LinearAlgebra.Double.DiagonalMatrix.Identity(initial_guess.Count);
            }

            // Determine active set
            var             gradientProjectionResult = QuadraticGradientProjectionSearch.Search(candidatePoint.Point, candidatePoint.Gradient, pseudoHessian, _lowerBound, _upperBound);
            var             cauchyPoint = gradientProjectionResult.CauchyPoint;
            var             fixedCount  = gradientProjectionResult.FixedCount;
            var             isFixed     = gradientProjectionResult.IsFixed;
            var             freeCount   = _lowerBound.Count - fixedCount;
            Vector <double> solution1;

            if (freeCount > 0)
            {
                var reducedGradient     = new DenseVector(freeCount);
                var reducedHessian      = new DenseMatrix(freeCount, freeCount);
                var reducedMap          = new List <int>(freeCount);
                var reducedInitialPoint = new DenseVector(freeCount);
                var reducedCauchyPoint  = new DenseVector(freeCount);

                CreateReducedData(candidatePoint.Point, cauchyPoint, isFixed, _lowerBound, _upperBound, candidatePoint.Gradient, pseudoHessian, reducedInitialPoint, reducedCauchyPoint, reducedGradient, reducedHessian, reducedMap);

                // Determine search direction and maximum step size
                Vector <double> reducedSolution1 = reducedInitialPoint + reducedHessian.Cholesky().Solve(-reducedGradient);

                solution1 = ReducedToFull(reducedMap, reducedSolution1, cauchyPoint);
            }
            else
            {
                solution1 = cauchyPoint;
            }

            var directionFromCauchy    = solution1 - cauchyPoint;
            var maxStepFromCauchyPoint = FindMaxStep(cauchyPoint, directionFromCauchy, _lowerBound, _upperBound);

            var solution2 = cauchyPoint + Math.Min(maxStepFromCauchyPoint, 1.0) * directionFromCauchy;

            lineSearchDirection = solution2 - candidatePoint.Point;
            maxLineSearchStep   = FindMaxStep(candidatePoint.Point, lineSearchDirection, _lowerBound, _upperBound);

            if (maxLineSearchStep == 0.0)
            {
                lineSearchDirection = cauchyPoint - candidatePoint.Point;
                maxLineSearchStep   = FindMaxStep(candidatePoint.Point, lineSearchDirection, _lowerBound, _upperBound);
            }

            double estStepSize = -candidatePoint.Gradient * lineSearchDirection / (lineSearchDirection * pseudoHessian * lineSearchDirection);

            startingStepSize = Math.Min(Math.Max(estStepSize, 1.0), maxLineSearchStep);
            return(lineSearchDirection);
        }