コード例 #1
0
        /// <summary>
        /// Abses the minimum maximum.
        /// </summary>
        /// <param name="storage">The storage.</param>
        /// <param name="tensor">The tensor.</param>
        /// <returns>Tuple&lt;System.Double, System.Double&gt;.</returns>
        private static Tuple <double, double> AbsMinMax(Storage storage, NDArray tensor)
        {
            if (storage.ElementCount == 0)
            {
                return(Tuple.Create(0.0, 0.0));
            }

            double min = storage.GetElementAsFloat(0);
            double max = storage.GetElementAsFloat(0);

            // HACK this is a hacky way of iterating over the elements of the tensor.
            // if the tensor has holes, this will incorrectly include those elements
            // in the iteration.
            var minOffset = tensor.StorageOffset;
            var maxOffset = minOffset + TensorDimensionHelpers.GetStorageSize(tensor.Shape, tensor.Strides) - 1;

            for (long i = minOffset; i <= maxOffset; ++i)
            {
                var item = storage.GetElementAsFloat(i);
                if (item < min)
                {
                    min = item;
                }
                if (item > max)
                {
                    max = item;
                }
            }

            return(Tuple.Create(Math.Abs(min), Math.Abs(max)));
        }
コード例 #2
0
ファイル: NDArray.cs プロジェクト: zhuthree/SiaNet
 /// <summary>
 /// Initializes a new instance of the <see cref="NDArray"/> class.
 /// </summary>
 /// <param name="allocator">The allocator.</param>
 /// <param name="elementType">Type of the element.</param>
 /// <param name="sizes">The sizes.</param>
 /// <param name="strides">The strides.</param>
 public NDArray(IAllocator allocator, DType elementType, long[] sizes, long[] strides)
 {
     this.shape         = sizes;
     this.strides       = strides;
     this.storageOffset = 0;
     this.storage       = allocator.Allocate(elementType, TensorDimensionHelpers.GetStorageSize(sizes, strides));
 }
コード例 #3
0
ファイル: NDArray.cs プロジェクト: zhuthree/SiaNet
        // Prepend singleton dimensions until DimensionCount equals newDimCount
        /// <summary>
        /// Pads to dim count.
        /// </summary>
        /// <param name="newDimCount">The new dim count.</param>
        /// <returns>Tensor.</returns>
        private NDArray PadToDimCount(int newDimCount)
        {
            var newSizes = Pad1Prepend(this.shape, newDimCount);

            var newStrides = TensorDimensionHelpers.GetContiguousStride(newSizes);

            Array.Copy(this.strides, 0, newStrides, newStrides.Length - this.strides.Length, this.strides.Length);

            return(new NDArray(newSizes, newStrides, this.storage, this.storageOffset));
        }
コード例 #4
0
ファイル: NDArray.cs プロジェクト: zhuthree/SiaNet
        /// <summary>
        /// Elements the count.
        /// </summary>
        /// <returns>System.Int64.</returns>
        public long ElementCount()
        {
            if (elementCount.HasValue)
            {
                return(elementCount.Value);
            }

            elementCount = TensorDimensionHelpers.ElementCount(shape);
            return(elementCount.Value);
        }
コード例 #5
0
ファイル: NDArray.cs プロジェクト: zhuthree/SiaNet
        /// <summary>
        /// Views the specified sizes.
        /// </summary>
        /// <param name="sizes">The sizes.</param>
        /// <returns>Tensor.</returns>
        /// <exception cref="InvalidOperationException">
        /// Cannot use View on a non-contiguous tensor000
        /// or
        /// Output tensor must have the same number of elements as the input
        /// </exception>
        public NDArray View(params long[] sizes)
        {
            if (!this.IsContiguous())
            {
                throw new InvalidOperationException("Cannot use View on a non-contiguous tensor");
            }

            if (this.ElementCount() != TensorDimensionHelpers.ElementCount(sizes))
            {
                throw new InvalidOperationException("Output tensor must have the same number of elements as the input");
            }

            return(new NDArray(sizes, TensorDimensionHelpers.GetContiguousStride(sizes), this.storage, this.storageOffset));
        }
コード例 #6
0
        /// <summary>
        /// Determines whether [is int only] [the specified storage].
        /// </summary>
        /// <param name="storage">The storage.</param>
        /// <param name="tensor">The tensor.</param>
        /// <returns><c>true</c> if [is int only] [the specified storage]; otherwise, <c>false</c>.</returns>
        private static bool IsIntOnly(Storage storage, NDArray tensor)
        {
            // HACK this is a hacky way of iterating over the elements of the tensor.
            // if the tensor has holes, this will incorrectly include those elements
            // in the iteration.
            var minOffset = tensor.StorageOffset;
            var maxOffset = minOffset + TensorDimensionHelpers.GetStorageSize(tensor.Shape, tensor.Strides) - 1;

            for (long i = minOffset; i <= maxOffset; ++i)
            {
                var value = Convert.ToDouble((object)storage.GetElementAsFloat(i));
                if (value != Math.Ceiling(value))
                {
                    return(false);
                }
            }

            return(true);
        }
コード例 #7
0
ファイル: NDArray.cs プロジェクト: zhuthree/SiaNet
 /// <summary>
 /// Construct a new tensor, using the given allocator to construct a storage. The new tensor
 /// will be contiguous in memory. The tensor's elements will not be initialized.
 /// </summary>
 /// <param name="allocator"></param>
 /// <param name="elementType"></param>
 /// <param name="sizes"></param>
 /// <summary>
 /// Initializes a new instance of the <see cref="NDArray"/> class.
 /// </summary>
 /// <param name="allocator">The allocator.</param>
 /// <param name="elementType">Type of the element.</param>
 /// <param name="sizes">The sizes.</param>
 public NDArray(IAllocator allocator, DType elementType, params long[] sizes)
     : this(allocator, elementType, sizes, TensorDimensionHelpers.GetContiguousStride(sizes))
 {
 }