コード例 #1
0
ファイル: CTRNN.cs プロジェクト: zaheeroz/qd-maze-simulator
 public CTRNN(int biasNeuronCount,
                         int inputNeuronCount,
                         int outputNeuronCount,
                         int totalNeuronCount,
                         FloatFastConnection[] connections,
                         float[] biasList,
                         IActivationFunction[] activationFunctions,
                         ModulePacket[] modules,
                         float[] timeConstArray) : base(biasNeuronCount,inputNeuronCount,outputNeuronCount,totalNeuronCount,connections, biasList,activationFunctions, modules)
 {
     timeConstantArray = timeConstArray;
     activeSumsArray = new float[timeConstantArray.Length];
     oldActivation = new float[timeConstantArray.Length];
 }
コード例 #2
0
        static public ModularNetwork DecodeToCTRNN(NeatGenome.NeatGenome g)
        {
            int inputCount = g.InputNeuronCount;
            int outputCount = g.OutputNeuronCount;
            int neuronCount = g.NeuronGeneList.Count;

            IActivationFunction[] activationFunctions = new IActivationFunction[neuronCount];
            float[] biasList = new float[neuronCount];
            float[] timeConst = new float[neuronCount];

            Dictionary<uint, int> neuronLookup = new Dictionary<uint, int>(neuronCount);

            // Create an array of the activation functions for each non-module node node in the genome.
            // Start with a bias node if there is one in the genome.
            // The genome's neuron list is assumed to be ordered by type, with the bias node appearing first.
            int neuronGeneIndex = 0;
            for (; neuronGeneIndex < neuronCount; neuronGeneIndex++)
            {
                if (g.NeuronGeneList[neuronGeneIndex].NeuronType != NeuronType.Bias)
                    break;
                activationFunctions[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].ActivationFunction;
                neuronLookup.Add(g.NeuronGeneList[neuronGeneIndex].InnovationId, neuronGeneIndex);
            }
            int biasCount = neuronGeneIndex;
            for (; neuronGeneIndex < neuronCount; neuronGeneIndex++)
            {
                activationFunctions[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].ActivationFunction;
                neuronLookup.Add(g.NeuronGeneList[neuronGeneIndex].InnovationId, neuronGeneIndex);
                biasList[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].Bias;
                timeConst[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].TimeConstant;
            }

            // Create an array of the activation functions, inputs, and outputs for each module in the genome.
            ModulePacket[] modules = new ModulePacket[g.ModuleGeneList.Count];
            for (int i = g.ModuleGeneList.Count - 1; i >= 0; i--)
            {
                modules[i].function = g.ModuleGeneList[i].Function;
                // Must translate input and output IDs to array locations.
                modules[i].inputLocations = new int[g.ModuleGeneList[i].InputIds.Count];
                for (int j = g.ModuleGeneList[i].InputIds.Count - 1; j >= 0; j--)
                {
                    modules[i].inputLocations[j] = neuronLookup[g.ModuleGeneList[i].InputIds[j]];
                }
                modules[i].outputLocations = new int[g.ModuleGeneList[i].OutputIds.Count];
                for (int j = g.ModuleGeneList[i].OutputIds.Count - 1; j >= 0; j--)
                {
                    modules[i].outputLocations[j] = neuronLookup[g.ModuleGeneList[i].OutputIds[j]];
                }
            }

            // ConnectionGenes point to a neuron's innovation ID. Translate this ID to the neuron's index in the neuron array. 
            FloatFastConnection[] connections = new FloatFastConnection[g.ConnectionGeneList.Count];
            for (int connectionGeneIndex = g.ConnectionGeneList.Count - 1; connectionGeneIndex >= 0; connectionGeneIndex--)
            {
                ConnectionGene connectionGene = g.ConnectionGeneList[connectionGeneIndex];
                connections[connectionGeneIndex].sourceNeuronIdx = neuronLookup[connectionGene.SourceNeuronId];
                connections[connectionGeneIndex].targetNeuronIdx = neuronLookup[connectionGene.TargetNeuronId];
                connections[connectionGeneIndex].weight = (float)connectionGene.Weight;

            }

            CTRNN mn = new CTRNN(biasCount, inputCount, outputCount, neuronCount, connections, biasList, activationFunctions, modules,timeConst);

            mn.genome = g;
            return mn;
        }
コード例 #3
0
        static public ModularNetwork DecodeToModularNetwork(NeatGenome.NeatGenome g)
        {
            int inputCount = g.InputNeuronCount;
            int outputCount = g.OutputNeuronCount;
            int neuronCount = g.NeuronGeneList.Count;

            IActivationFunction[] activationFunctions = new IActivationFunction[neuronCount];
            float[] biasList = new float[neuronCount];

            Dictionary<uint, int> neuronLookup = new Dictionary<uint, int>(neuronCount);

            // Schrum: In case there are output neurons out of order
            g.NeuronGeneList.NeuronSortCheck();

            // Create an array of the activation functions for each non-module node node in the genome.
            // Start with a bias node if there is one in the genome.
            // The genome's neuron list is assumed to be ordered by type, with the bias node appearing first.
            int neuronGeneIndex = 0;
            for (; neuronGeneIndex < neuronCount; neuronGeneIndex++) {
                if (g.NeuronGeneList[neuronGeneIndex].NeuronType != NeuronType.Bias)
                    break;
                activationFunctions[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].ActivationFunction;
                neuronLookup.Add(g.NeuronGeneList[neuronGeneIndex].InnovationId, neuronGeneIndex);
            }
            int biasCount = neuronGeneIndex;
            // Schrum: debug
            //Console.WriteLine("start (after bias): " + g.GenomeId);

            // Schrum: Debugging
            //NeuronType expectedType = NeuronType.Input;

            for (; neuronGeneIndex < neuronCount; neuronGeneIndex++)
            {
                activationFunctions[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].ActivationFunction;
                // Schrum: Debug
                /*
                if (expectedType != g.NeuronGeneList[neuronGeneIndex].NeuronType)
                {
                    if (expectedType == NeuronType.Input && g.NeuronGeneList[neuronGeneIndex].NeuronType == NeuronType.Output)
                    {
                        expectedType = NeuronType.Output;
                    }
                    else if (expectedType == NeuronType.Output && g.NeuronGeneList[neuronGeneIndex].NeuronType == NeuronType.Hidden)
                    {
                        expectedType = NeuronType.Hidden;
                    }
                    else
                    {
                        // Error condition:
                        Console.WriteLine("Error with genome: " + g.GenomeId);

                        XmlDocument doc = new XmlDocument();
                        XmlGenomeWriterStatic.Write(doc, (SharpNeatLib.NeatGenome.NeatGenome)g);
                        FileInfo oFileInfo = new FileInfo("ProblemGenome.xml");
                        doc.Save(oFileInfo.FullName);

                        Environment.Exit(1);
                    }
                }
                */
                neuronLookup.Add(g.NeuronGeneList[neuronGeneIndex].InnovationId, neuronGeneIndex);
                biasList[neuronGeneIndex] = g.NeuronGeneList[neuronGeneIndex].Bias;
            }

            // Create an array of the activation functions, inputs, and outputs for each module in the genome.
            ModulePacket[] modules = new ModulePacket[g.ModuleGeneList.Count];
            for (int i = g.ModuleGeneList.Count - 1; i >= 0; i--) {
                modules[i].function = g.ModuleGeneList[i].Function;
                // Must translate input and output IDs to array locations.
                modules[i].inputLocations = new int[g.ModuleGeneList[i].InputIds.Count];
                for (int j = g.ModuleGeneList[i].InputIds.Count - 1; j >= 0; j--) {
                    modules[i].inputLocations[j] = neuronLookup[g.ModuleGeneList[i].InputIds[j]];
                }
                modules[i].outputLocations = new int[g.ModuleGeneList[i].OutputIds.Count];
                for (int j = g.ModuleGeneList[i].OutputIds.Count - 1; j >= 0; j--) {
                    modules[i].outputLocations[j] = neuronLookup[g.ModuleGeneList[i].OutputIds[j]];
                }
            }

            // ConnectionGenes point to a neuron's innovation ID. Translate this ID to the neuron's index in the neuron array. 
            FloatFastConnection[] connections = new FloatFastConnection[g.ConnectionGeneList.Count];
            for (int connectionGeneIndex = g.ConnectionGeneList.Count - 1; connectionGeneIndex >= 0; connectionGeneIndex--) {
                ConnectionGene connectionGene = g.ConnectionGeneList[connectionGeneIndex];
                connections[connectionGeneIndex].sourceNeuronIdx = neuronLookup[connectionGene.SourceNeuronId];
                connections[connectionGeneIndex].targetNeuronIdx = neuronLookup[connectionGene.TargetNeuronId];
                connections[connectionGeneIndex].weight = (float)connectionGene.Weight;

                connections[connectionGeneIndex].learningRate = connectionGene.learningRate;
                connections[connectionGeneIndex].A = connectionGene.A;
                connections[connectionGeneIndex].B = connectionGene.B;
                connections[connectionGeneIndex].C = connectionGene.C;
                connections[connectionGeneIndex].D = connectionGene.D;
                connections[connectionGeneIndex].modConnection = connectionGene.modConnection;

            }

            ModularNetwork mn = new ModularNetwork(biasCount, inputCount, outputCount, g.OutputsPerPolicy, neuronCount, connections, biasList, activationFunctions, modules);
            if (g.networkAdaptable) mn.adaptable = true;
            if (g.networkModulatory) mn.modulatory = true;

            mn.genome = g;
            return mn;
        }
コード例 #4
0
        public ModularNetwork(int biasNeuronCount,
                                int inputNeuronCount,
                                int outputNeuronCount,
                                int totalNeuronCount,
                                FloatFastConnection[] connections,
                                float[] biasList,
                                IActivationFunction[] activationFunctions,
                                ModulePacket[] modules)
        {
            this.biasNeuronCount = biasNeuronCount;
            this.inputNeuronCount = inputNeuronCount;
            this.totalInputNeuronCount = biasNeuronCount + inputNeuronCount;
            this.outputNeuronCount = outputNeuronCount;
            this.connections = connections;
            this.activationFunctions = activationFunctions;
            this.modules = modules;
            this.biasList = biasList;


            // Justin: Setup fields for recursive network activation
            calculated = new bool[totalNeuronCount];
            dependencies = new List<int>[totalNeuronCount];
            endNeurons = new List<int>();
            for (int i = 0; i < totalNeuronCount; i++)
            {
                dependencies[i] = new List<int>();
                calculated[i] = false;
            }
            // Calculate dependencies. We will temporarily use calculated[] to store whether or not neurons have dependent "children" (will re-initialize the array to false afterwards)
            for (int i = 0; i < connections.Length; i++)
            {
                calculated[connections[i].sourceNeuronIdx] = true; // Mark the source as having dependents
                dependencies[connections[i].targetNeuronIdx].Add(i); // Add the source as a dependency of the target
            }
            // Mark "ending neurons" by seeing which neurons have no dependents
            for (int i = 0; i < totalNeuronCount; i++)
            {
                if (calculated[i] == false) endNeurons.Add(i);
                calculated[i] = false; // Also, re-initialize calculated[] to false
            }
            //foreach (int i in endNeurons) Console.Write(i + " "); Console.WriteLine();
            //Console.WriteLine("# Outputs: " + endNeurons.Count + " guessed: " + outputNeuronCount + " total: " + totalNeuronCount + " bias: " + biasNeuronCount);
            /*int counter = 0;
            for (int i = 0; i < dependencies.Length; i++)
            {
                if (dependencies[i].Count == 0) counter++;
                //foreach (int arr in dependencies[i]) Console.Write(arr + " ");
                //Console.WriteLine();
            }
            Console.WriteLine("# Inputs: " + counter + " guessed: " + totalInputNeuronCount + " total: " + totalNeuronCount + " bias: " + biasNeuronCount);
            //*/

            // Allocate the arrays that store the states at different points in the neural network.
            // The neuron signals are initialised to 0 by default. Only bias nodes need setting to 1.
            neuronSignals = new float[totalNeuronCount];
            modSignals = new float[totalNeuronCount];

            neuronSignalsBeingProcessed = new float[totalNeuronCount];
            for (int i = 0; i < biasNeuronCount; i++) {
                neuronSignals[i] = 1.0F;
            }
        }
コード例 #5
0
        public ModularNetwork(int biasNeuronCount,
            int inputNeuronCount,
            int outputNeuronCount,
            int totalNeuronCount,
            FloatFastConnection[] connections,
            float[] biasList,
            IActivationFunction[] activationFunctions,
            ModulePacket[] modules)
        {
            this.biasNeuronCount = biasNeuronCount;
            this.inputNeuronCount = inputNeuronCount;
            this.totalInputNeuronCount = biasNeuronCount + inputNeuronCount;
            this.outputNeuronCount = outputNeuronCount;
            this.connections = connections;
            this.activationFunctions = activationFunctions;
            this.modules = modules;
            this.biasList = biasList;

            adaptable = false;
            modulatory = false;

            // Allocate the arrays that store the states at different points in the neural network.
            // The neuron signals are initialised to 0 by default. Only bias nodes need setting to 1.
            neuronSignals = new float[totalNeuronCount];
            modSignals = new float[totalNeuronCount];

            neuronSignalsBeingProcessed = new float[totalNeuronCount];
            for (int i = 0; i < biasNeuronCount; i++) {
                neuronSignals[i] = 1.0F;
            }
            this.activated = new bool[TotalNeuronCount];
            this.inActivation = new bool[TotalNeuronCount];
            this.lastActivation = new float[TotalNeuronCount];

            adjacentList = new List<int>[TotalNeuronCount];
            reverseAdjacentList = new List<int>[TotalNeuronCount];
            adjacentMatrix = new float[TotalNeuronCount, TotalNeuronCount];

            for (int i = 0; i < TotalNeuronCount; i++)
            {
                this.activated[i] = this.inActivation[i] = false;
                this.lastActivation[i] = 0;
                this.adjacentList[i] = new List<int>(TotalNeuronCount);
                this.reverseAdjacentList[i] = new List<int>(TotalNeuronCount);
                // this.adjacentMatrix[i] = new List<float>(TotalNeuronCount);

            }

            // Set up adjacency list and matrix
            for (int i = 0; i < this.connections.Length; i++)
            {
                int crs = connections[i].sourceNeuronIdx;
                int crt = connections[i].targetNeuronIdx;

                // Holds outgoing nodes
                this.adjacentList[crs].Add(crt);

                // Holds incoming nodes
                this.reverseAdjacentList[crt].Add(crs);

                this.adjacentMatrix[crs, crt] = connections[i].weight;
            }
        }