コード例 #1
0
        private void TrainingStats(EvalParameters evalParams)
        {
            var numCorrect = 0;

            for (var ei = 0; ei < numUniqueEvents; ei++)
            {
                for (var ni = 0; ni < numTimesEventsSeen[ei]; ni++)
                {
                    var modelDistribution = new double[numOutcomes];

                    PerceptronModel.Eval(
                        contexts[ei],
                        values?[ei],
                        modelDistribution,
                        evalParams,
                        false);

                    var max = MaxIndex(modelDistribution);
                    if (max == outcomeList[ei])
                    {
                        numCorrect++;
                    }
                }
            }
            var trainingAccuracy = (double)numCorrect / numEvents;

            info.Append("        Correct Events: {0}\n" +
                        "          Total Events: {1}\n" +
                        "              Accuracy: {2}\n", numCorrect, numEvents, trainingAccuracy);

            Display("\nPerceptron training complete:\n");
            Display("\t Correct Events : " + numCorrect);
            Display("\t   Total Events : " + numEvents);
            Display("\t       Accuracy : " + trainingAccuracy);
        }
コード例 #2
0
        private void NextIteration(int iteration) {
            iteration--; //move to 0-based index

            var numCorrect = 0;
            var oei = 0;
            var si = 0;
            var featureCounts = new Dictionary<int, Dictionary<string, float>>();
            for (var oi = 0; oi < numOutcomes; oi++) {
                featureCounts[oi] = new Dictionary<string, float>();
            }
            // ReSharper disable once CoVariantArrayConversion
            var model = new PerceptronModel(param, pMap, outcomeLabels);

            sequenceStream.Reset();

            Sequence sequence;
            while ((sequence = sequenceStream.Read()) != null) {
                var taggerEvents = sequenceStream.UpdateContext(sequence, model);
                var update = false;
                for (var ei = 0; ei < sequence.Events.Length; ei++,oei++) {
                    if (!taggerEvents[ei].Outcome.Equals(sequence.Events[ei].Outcome)) {
                        update = true;
                        //break;
                    } else {
                        numCorrect++;
                    }
                }
                if (update) {
                    for (var oi = 0; oi < numOutcomes; oi++) {
                        featureCounts[oi].Clear();
                    }

                    //training feature count computation
                    for (var ei = 0; ei < sequence.Events.Length; ei++,oei++) {
                        var contextStrings = sequence.Events[ei].Context;
                        var values = sequence.Events[ei].Values;
                        var oi = oMap[sequence.Events[ei].Outcome];
                        for (var ci = 0; ci < contextStrings.Length; ci++) {
                            float value = 1;
                            if (values != null) {
                                value = values[ci];
                            }


                            if (featureCounts[oi].ContainsKey(contextStrings[ci])) {
                                featureCounts[oi][contextStrings[ci]] += value;
                            } else {
                                featureCounts[oi][contextStrings[ci]] = value;
                            }
                        }
                    }

                    //evaluation feature count computation
                    foreach (var taggerEvent in taggerEvents) {
                        var contextStrings = taggerEvent.Context;
                        var values = taggerEvent.Values;
                        var oi = oMap[taggerEvent.Outcome];
                        for (var ci = 0; ci < contextStrings.Length; ci++) {
                            float value = 1;
                            if (values != null) {
                                value = values[ci];
                            }

                            float c;
                            if (featureCounts[oi].ContainsKey(contextStrings[ci])) {
                                c = featureCounts[oi][contextStrings[ci]] - value;
                            } else {
                                c = -1*value;
                            }

                            if (c.Equals(0f)) {
                                featureCounts[oi].Remove(contextStrings[ci]);
                            }
                        }
                    }
                    for (var oi = 0; oi < numOutcomes; oi++) {
                        foreach (var feature in featureCounts[oi].Keys) {
                            var pi = pMap[feature];
                            if (pi != -1) {
                                param[pi].UpdateParameter(oi, featureCounts[oi][feature]);
                                if (useAverage) {
                                    if (updates[pi][oi][VALUE] != 0) {
                                        averageParams[pi].UpdateParameter(oi,
                                            updates[pi][oi][VALUE]*
                                            (numSequences*(iteration - updates[pi][oi][ITER]) +
                                             (si - updates[pi][oi][EVENT])));
                                    }
                                    updates[pi][oi][VALUE] = (int) param[pi].Parameters[oi];
                                    updates[pi][oi][ITER] = iteration;
                                    updates[pi][oi][EVENT] = si;
                                }
                            }
                        }
                    }
                    // ReSharper disable once CoVariantArrayConversion
                    model = new PerceptronModel(param, pMap, outcomeLabels);

                }
                si++;
            }
            //finish average computation
            var totIterations = (double) iterations*si;
            if (useAverage && iteration == iterations - 1) {
                for (var pi = 0; pi < numPreds; pi++) {
                    var predParams = averageParams[pi].Parameters;
                    for (var oi = 0; oi < numOutcomes; oi++) {
                        if (updates[pi][oi][VALUE] != 0) {
                            predParams[oi] += updates[pi][oi][VALUE]*
                                              (numSequences*(iterations - updates[pi][oi][ITER]) -
                                               updates[pi][oi][EVENT]);
                        }

                        if (predParams[oi].Equals(0d))
                            continue;

                        predParams[oi] /= totIterations;
                        averageParams[pi].SetParameter(oi, predParams[oi]);
                    }
                }
            }

            trainingAccuracy = (double) numCorrect/numEvents;

            Display(string.Format("{0,-4} {1} of {2} - {3}",
                iteration,
                numCorrect,
                numEvents,
                trainingAccuracy));
        }
コード例 #3
0
        private void NextIteration(int iteration)
        {
            iteration--; //move to 0-based index

            var numCorrect    = 0;
            var oei           = 0;
            var si            = 0;
            var featureCounts = new Dictionary <int, Dictionary <string, float> >();

            for (var oi = 0; oi < numOutcomes; oi++)
            {
                featureCounts[oi] = new Dictionary <string, float>();
            }
            // ReSharper disable once CoVariantArrayConversion
            var model = new PerceptronModel(param, pMap, outcomeLabels);

            sequenceStream.Reset();

            Sequence sequence;

            while ((sequence = sequenceStream.Read()) != null)
            {
                var taggerEvents = sequenceStream.UpdateContext(sequence, model);
                var update       = false;
                for (var ei = 0; ei < sequence.Events.Length; ei++, oei++)
                {
                    if (!taggerEvents[ei].Outcome.Equals(sequence.Events[ei].Outcome))
                    {
                        update = true;
                        //break;
                    }
                    else
                    {
                        numCorrect++;
                    }
                }
                if (update)
                {
                    for (var oi = 0; oi < numOutcomes; oi++)
                    {
                        featureCounts[oi].Clear();
                    }

                    //training feature count computation
                    for (var ei = 0; ei < sequence.Events.Length; ei++, oei++)
                    {
                        var contextStrings = sequence.Events[ei].Context;
                        var values         = sequence.Events[ei].Values;
                        var oi             = oMap[sequence.Events[ei].Outcome];
                        for (var ci = 0; ci < contextStrings.Length; ci++)
                        {
                            float value = 1;
                            if (values != null)
                            {
                                value = values[ci];
                            }


                            if (featureCounts[oi].ContainsKey(contextStrings[ci]))
                            {
                                featureCounts[oi][contextStrings[ci]] += value;
                            }
                            else
                            {
                                featureCounts[oi][contextStrings[ci]] = value;
                            }
                        }
                    }

                    //evaluation feature count computation
                    foreach (var taggerEvent in taggerEvents)
                    {
                        var contextStrings = taggerEvent.Context;
                        var values         = taggerEvent.Values;
                        var oi             = oMap[taggerEvent.Outcome];
                        for (var ci = 0; ci < contextStrings.Length; ci++)
                        {
                            float value = 1;
                            if (values != null)
                            {
                                value = values[ci];
                            }

                            float c;
                            if (featureCounts[oi].ContainsKey(contextStrings[ci]))
                            {
                                c = featureCounts[oi][contextStrings[ci]] - value;
                            }
                            else
                            {
                                c = -1 * value;
                            }

                            if (c.Equals(0f))
                            {
                                featureCounts[oi].Remove(contextStrings[ci]);
                            }
                        }
                    }
                    for (var oi = 0; oi < numOutcomes; oi++)
                    {
                        foreach (var feature in featureCounts[oi].Keys)
                        {
                            var pi = pMap[feature];
                            if (pi != -1)
                            {
                                param[pi].UpdateParameter(oi, featureCounts[oi][feature]);
                                if (useAverage)
                                {
                                    if (updates[pi][oi][VALUE] != 0)
                                    {
                                        averageParams[pi].UpdateParameter(oi,
                                                                          updates[pi][oi][VALUE] *
                                                                          (numSequences * (iteration - updates[pi][oi][ITER]) +
                                                                           (si - updates[pi][oi][EVENT])));
                                    }
                                    updates[pi][oi][VALUE] = (int)param[pi].Parameters[oi];
                                    updates[pi][oi][ITER]  = iteration;
                                    updates[pi][oi][EVENT] = si;
                                }
                            }
                        }
                    }
                    // ReSharper disable once CoVariantArrayConversion
                    model = new PerceptronModel(param, pMap, outcomeLabels);
                }
                si++;
            }
            //finish average computation
            var totIterations = (double)iterations * si;

            if (useAverage && iteration == iterations - 1)
            {
                for (var pi = 0; pi < numPreds; pi++)
                {
                    var predParams = averageParams[pi].Parameters;
                    for (var oi = 0; oi < numOutcomes; oi++)
                    {
                        if (updates[pi][oi][VALUE] != 0)
                        {
                            predParams[oi] += updates[pi][oi][VALUE] *
                                              (numSequences * (iterations - updates[pi][oi][ITER]) -
                                               updates[pi][oi][EVENT]);
                        }

                        if (predParams[oi].Equals(0d))
                        {
                            continue;
                        }

                        predParams[oi] /= totIterations;
                        averageParams[pi].SetParameter(oi, predParams[oi]);
                    }
                }
            }

            trainingAccuracy = (double)numCorrect / numEvents;

            Display(string.Format("{0,-4} {1} of {2} - {3}",
                                  iteration,
                                  numCorrect,
                                  numEvents,
                                  trainingAccuracy));
        }
コード例 #4
0
        private MutableContext[] FindParameters(int iterations, bool useAverage)
        {
            info.Append("  Number of Iterations: {0}\n", iterations);

            Display("\nPerforming " + iterations + " iterations.\n");

            var allOutcomesPattern = new int[numOutcomes];

            for (var oi = 0; oi < numOutcomes; oi++)
            {
                allOutcomesPattern[oi] = oi;
            }

            /* Stores the estimated parameter value of each predicate during iteration. */
            var param = new MutableContext[numPreds];

            for (var pi = 0; pi < numPreds; pi++)
            {
                param[pi] = new MutableContext(allOutcomesPattern, new double[numOutcomes]);
                for (var aoi = 0; aoi < numOutcomes; aoi++)
                {
                    param[pi].SetParameter(aoi, 0.0);
                }
            }

            // ReSharper disable once CoVariantArrayConversion
            var evalParams = new EvalParameters(param, numOutcomes);

            // Stores the sum of parameter values of each predicate over many iterations.
            var summedParams = new MutableContext[numPreds];

            if (useAverage)
            {
                for (var pi = 0; pi < numPreds; pi++)
                {
                    summedParams[pi] = new MutableContext(allOutcomesPattern, new double[numOutcomes]);
                    for (var aoi = 0; aoi < numOutcomes; aoi++)
                    {
                        summedParams[pi].SetParameter(aoi, 0.0);
                    }
                }
            }

            // Keep track of the previous three accuracies. The difference of
            // the mean of these and the current training set accuracy is used
            // with tolerance to decide whether to stop.
            var prevAccuracy1 = 0.0;
            var prevAccuracy2 = 0.0;
            var prevAccuracy3 = 0.0;

            // A counter for the denominator for averaging.
            var numTimesSummed = 0;

            double stepSize = 1;

            for (var i = 1; i <= iterations; i++)
            {
                // Decrease the step size by a small amount.
                if (stepSizeDecrease > 0)
                {
                    stepSize *= 1 - stepSizeDecrease;
                }


                if (Monitor != null && Monitor.Token.CanBeCanceled)
                {
                    Monitor.Token.ThrowIfCancellationRequested();
                }

                var numCorrect = 0;

                for (var ei = 0; ei < numUniqueEvents; ei++)
                {
                    var targetOutcome = outcomeList[ei];

                    for (var ni = 0; ni < numTimesEventsSeen[ei]; ni++)
                    {
                        // Compute the model's prediction according to the current parameters.
                        var modelDistribution = new double[numOutcomes];

                        PerceptronModel.Eval(
                            contexts[ei],
                            values != null ? values[ei] : null,
                            modelDistribution,
                            evalParams, false);

                        var maxOutcome = MaxIndex(modelDistribution);

                        // If the predicted outcome is different from the target
                        // outcome, do the standard update: boost the parameters
                        // associated with the target and reduce those associated
                        // with the incorrect predicted outcome.
                        if (maxOutcome != targetOutcome)
                        {
                            for (var ci = 0; ci < contexts[ei].Length; ci++)
                            {
                                var pi = contexts[ei][ci];
                                if (values == null)
                                {
                                    param[pi].UpdateParameter(targetOutcome, stepSize);
                                    param[pi].UpdateParameter(maxOutcome, -stepSize);
                                }
                                else
                                {
                                    param[pi].UpdateParameter(targetOutcome, stepSize * values[ei][ci]);
                                    param[pi].UpdateParameter(maxOutcome, -stepSize * values[ei][ci]);
                                }
                            }
                        }

                        // Update the counts for accuracy.
                        if (maxOutcome == targetOutcome)
                        {
                            numCorrect++;
                        }
                    }
                }

                // Calculate the training accuracy and display.
                var trainingAccuracy = (double)numCorrect / numEvents;
                Display($"{i,-4} {numCorrect} of {numEvents} - {trainingAccuracy}");


                // TODO: Make averaging configurable !!!

                bool doAveraging;

                if (useAverage && UseSkippedAveraging && (i < 20 || IsPerfectSquare(i)))
                {
                    doAveraging = true;
                }
                else if (useAverage)
                {
                    doAveraging = true;
                }
                else
                {
                    doAveraging = false;
                }

                if (doAveraging)
                {
                    numTimesSummed++;
                    for (var pi = 0; pi < numPreds; pi++)
                    {
                        for (var aoi = 0; aoi < numOutcomes; aoi++)
                        {
                            summedParams[pi].UpdateParameter(aoi, param[pi].Parameters[aoi]);
                        }
                    }
                }

                // If the tolerance is greater than the difference between the
                // current training accuracy and all of the previous three
                // training accuracies, stop training.
                if (Math.Abs(prevAccuracy1 - trainingAccuracy) < tolerance &&
                    Math.Abs(prevAccuracy2 - trainingAccuracy) < tolerance &&
                    Math.Abs(prevAccuracy3 - trainingAccuracy) < tolerance)
                {
                    Display("Stopping: change in training set accuracy less than " + tolerance + "\n");
                    break;
                }

                // Update the previous training accuracies.
                prevAccuracy1 = prevAccuracy2;
                prevAccuracy2 = prevAccuracy3;
                prevAccuracy3 = trainingAccuracy;
            }

            // Output the final training stats.
            TrainingStats(evalParams);


            if (!useAverage)
            {
                return(param);
            }

            if (numTimesSummed == 0) // Improbable but possible according to the Coverity.
            {
                numTimesSummed = 1;
            }

            // Create averaged parameters
            for (var pi = 0; pi < numPreds; pi++)
            {
                for (var aoi = 0; aoi < numOutcomes; aoi++)
                {
                    summedParams[pi].SetParameter(aoi, summedParams[pi].Parameters[aoi] / numTimesSummed);
                }
            }

            return(summedParams);
        }