public async Task <List <FaceSendInfo> > FindSimilarPersonWithEmotion() { var facesInfo = new List <FaceSendInfo>(); List <SimilarFaceMatch> result = new List <SimilarFaceMatch>(); //Loop thru all detected faces from previous steps and fill the facesInfo array //For ease of processing in Azure Stream Analytics we create single level object foreach (var f in this.DetectedFaces) { var fsi = new FaceSendInfo(); //Add emotions var e = CoreUtil.FindEmotionForFace(f, this.DetectedEmotion); FeedFaceInfo(f, fsi, e); //We sen also info how many faces in total were recognized on the picture with current face fsi.facesNo = this.DetectedFaces.Count(); Tuple <SimilarPersistedFace, string> similarPersistedFace = await FaceListManager.FindSimilarPersistedFaceAsync(await this.GetImageStreamCallback(), f.FaceId, f.FaceRectangle); if (similarPersistedFace != null) { result.Add(new SimilarFaceMatch { Face = f, SimilarPersistedFace = similarPersistedFace.Item1 }); fsi.canid = similarPersistedFace.Item1.PersistedFaceId.ToString(); fsi.canconf = similarPersistedFace.Item1.Confidence; //In order to get also name we need to obtain Person //p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId); fsi.canname = similarPersistedFace.Item1.PersistedFaceId.ToString(); } facesInfo.Add(fsi); } SimilarFaceMatches = result; return(facesInfo); }
public async Task <List <FaceSendInfo> > IdentifyOrAddPersonWithEmotionsAsync(string groupName, ObservableCollection <IdentifiedFaces> identifiedPersonsIdCollection) { var facesInfo = new List <FaceSendInfo>(); //Loop thru all detected faces from previous steps and fill the facesInfo array //For ease of processing in Azure Stream Analytics we create single level object foreach (var f in this.DetectedFaces) { var fsi = new FaceSendInfo(); //Add emotions var e = CoreUtil.FindEmotionForFace(f, this.DetectedEmotion); FeedFaceInfo(f, fsi, e); //We sen also info how many faces in total were recognized on the picture with current face fsi.facesNo = this.DetectedFaces.Count(); facesInfo.Add(fsi); } //Now we proceed to face recognition/identification //First we create group if it does not exist try { var g = await FaceServiceHelper.CreatePersonGroupIfNoGroupExists(groupName); groupId = g.PersonGroupId; } catch (Exception e) { // Catch errors with individual groups so we can continue looping through all groups. Maybe an answer will come from // another one. ErrorTrackingHelper.TrackException(e, "Problem creating group"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem creating group"); } } //We need to find candidate for every face try { IdentifyResult[] groupResults = await this.IdentifyFacesAsync(groupId); //We loop thri all faces again in order to find candidate foreach (var f in this.DetectedFaces) { bool needToRetrain = true; var fi = facesInfo.Where(fin => fin.faceId == f.FaceId.ToString()).FirstOrDefault(); var newPersonID = Guid.NewGuid(); if (groupResults != null && groupResults.Where(gr => gr.FaceId == f.FaceId).Any() && groupResults.Where(gr => gr.FaceId == f.FaceId).FirstOrDefault().Candidates.Any()) { var candidates = groupResults.Where(gr => gr.FaceId == f.FaceId).FirstOrDefault().Candidates.OrderByDescending(ca => ca.Confidence); Person p = new Person(); var can = candidates.FirstOrDefault(); //If we have sufficient confidence, we add Face for person if (can.Confidence >= SettingsHelper.Instance.Confidence) { fi.canid = can.PersonId.ToString(); fi.canconf = can.Confidence; //In order to get also name we need to obtain Person p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId); fi.canname = p.Name; var identifiedPersonFromList = identifiedPersonsIdCollection.Where(ip => ip.Id == can.PersonId.ToString()).FirstOrDefault(); //Check whether we did not added too much photos lately, it is not neccesary to add photo for face every time if (identifiedPersonFromList == null) { await AddFaceToPerson(f, p, can.PersonId); } else if (identifiedPersonFromList.NumOfAddedPhotosInLastPeriod < SettingsHelper.Instance.NumberOfPhotoAddsInPeriod) { await AddFaceToPerson(f, p, can.PersonId); identifiedPersonFromList.NumOfAddedPhotosInLastPeriod++; } else if ((DateTime.Now - identifiedPersonFromList.FirstPhotoAddedInLastPeriod).Hours > SettingsHelper.Instance.PhotoAddPeriodSize) { identifiedPersonFromList.NumOfAddedPhotosInLastPeriod = 1; identifiedPersonFromList.FirstPhotoAddedInLastPeriod = DateTime.Now; await AddFaceToPerson(f, p, can.PersonId); } else { needToRetrain = false; } } else { //if not sufficient confidence we also need to check whether there is similar face/ if not create new person await CreatePrsonIfNoSimilarFaceExistsAsync(facesInfo, newPersonID, f); } } else { //if no candidate we also need to check whether there is similar fac,e if not create new person await CreatePrsonIfNoSimilarFaceExistsAsync(facesInfo, newPersonID, f); } try { //We need to train after operation on top of group (addition of photo, person etc.) if (needToRetrain) { await FaceServiceHelper.TrainPersonGroupAsync(groupId); } } catch (Exception e) { // Catch error with training of group ErrorTrackingHelper.TrackException(e, "Problem training group"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem training group"); } } //Handle the identified persons collection to which we locally save every identified person if (!identifiedPersonsIdCollection.Where(ip => ip.Id == fi.canid).Any()) { identifiedPersonsIdCollection.Add(new IdentifiedFaces() { Id = fi.canid }); } //Increase counter of identifications else if (identifiedPersonsIdCollection.Where(ip => ip.Id == fi.canid).Any()) { identifiedPersonsIdCollection.Where(ip => ip.Id == fi.canid).FirstOrDefault().NumberOfIdentifications++; } //Find faces which were wrongly learned (small number of identifications) var tbd = new List <IdentifiedFaces>(); foreach (var ip in identifiedPersonsIdCollection) { if (ip.NumberOfIdentifications <= SettingsHelper.Instance.NeededFaceIdentNum && (ip.CreatedAt.AddSeconds(SettingsHelper.Instance.DeleteWindow) < DateTime.Now)) { var g = (await FaceServiceHelper.GetPersonGroupsAsync()).Where(gr => gr.Name == groupName).FirstOrDefault(); Person pers = await FaceServiceHelper.GetPersonAsync(g.PersonGroupId, new Guid(ip.Id)); //if we saved insufficient number of faces than delete if (pers.PersistedFaceIds.Length <= SettingsHelper.Instance.NeededFaceIdentNum) { await FaceServiceHelper.DeletePersonAsync(g.PersonGroupId, pers.PersonId); string similarFaceId = ""; using (var db = new KioskDBContext()) { var sfToDelete = db.SimilarFaces.Where(sf => sf.PersonId == pers.PersonId.ToString()).FirstOrDefault(); similarFaceId = sfToDelete.FaceId.ToString(); db.SimilarFaces.Remove(sfToDelete); } await FaceListManager.DeleteFaceFromFaceList(similarFaceId); await FaceServiceHelper.TrainPersonGroupAsync(g.PersonGroupId); tbd.Add(ip); } } } foreach (var iptodelete in tbd) { identifiedPersonsIdCollection.Remove(iptodelete); } } } catch (Exception e) { // Catch error with training of group ErrorTrackingHelper.TrackException(e, "Problem with cognitive services"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem with cognitive services"); } } return(facesInfo); }
public async Task <List <FaceSendInfo> > IdentifyOrAddPersonWithEmotionsAsync(string groupName, double confidence) { var time = DateTime.Now; //We also add emotions var facesInfo = new List <FaceSendInfo>(); foreach (var f in this.DetectedFaces) { var fsi = new FaceSendInfo(); var e = CoreUtil.FindEmotionForFace(f, this.DetectedEmotion); fsi.faceId = f.FaceId.ToString(); fsi.age = f.FaceAttributes.Age; fsi.faceRecHeight = f.FaceRectangle.Height; fsi.faceRecLeft = f.FaceRectangle.Left; fsi.faceRecTop = f.FaceRectangle.Top; fsi.faceRecWidth = f.FaceRectangle.Width; fsi.gender = f.FaceAttributes.Gender; fsi.smile = f.FaceAttributes.Smile; fsi.beard = f.FaceAttributes.FacialHair.Beard; fsi.moustache = f.FaceAttributes.FacialHair.Moustache; fsi.sideburns = f.FaceAttributes.FacialHair.Sideburns; fsi.glasses = f.FaceAttributes.Glasses.ToString(); fsi.headYaw = f.FaceAttributes.HeadPose.Yaw; fsi.headRoll = f.FaceAttributes.HeadPose.Roll; fsi.headPitch = f.FaceAttributes.HeadPose.Pitch; fsi.anger = e.Scores.Anger; fsi.contempt = e.Scores.Contempt; fsi.disgust = e.Scores.Disgust; fsi.fear = e.Scores.Fear; fsi.happiness = e.Scores.Happiness; fsi.neutral = e.Scores.Neutral; fsi.sadness = e.Scores.Sadness; fsi.surprise = e.Scores.Surprise; fsi.timeStamp = time; fsi.facesNo = this.DetectedFaces.Count(); facesInfo.Add(fsi); } var newPersonID = Guid.NewGuid(); //Move to initialization try { var g = await FaceServiceHelper.CreatePersonGroupIfNoGroupExists(groupName); groupId = g.PersonGroupId; } catch (Exception e) { // Catch errors with individual groups so we can continue looping through all groups. Maybe an answer will come from // another one. ErrorTrackingHelper.TrackException(e, "Problem creating group"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem creating group"); } } List <IdentifiedPerson> ipresult = new List <IdentifiedPerson>(); // Compute Face Identification and Unique Face Ids //We need to map detected faceID with actual personID (Identified face) try { IdentifyResult[] groupResults = await this.IdentifyFacesAsync(groupId); foreach (var f in this.DetectedFaces) { if (groupResults != null && groupResults.Where(gr => gr.FaceId == f.FaceId).Any() && groupResults.Where(gr => gr.FaceId == f.FaceId).FirstOrDefault().Candidates.Any()) { var candidates = groupResults.Where(gr => gr.FaceId == f.FaceId).FirstOrDefault().Candidates.OrderByDescending(ca => ca.Confidence); var fi = facesInfo.Where(fin => fin.faceId == f.FaceId.ToString()).FirstOrDefault(); int i = 0; Person p = new Person(); foreach (var can in candidates) { switch (i) { case 0: fi.can1id = can.PersonId.ToString(); fi.can1conf = can.Confidence; p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId); fi.can1name = p.Name; if (can.Confidence >= confidence) { ipresult.Add(new IdentifiedPerson() { Person = p, Confidence = can.Confidence, FaceId = f.FaceId }); if (p.PersistedFaceIds.Length == 248) { Guid persistedFaceId = p.PersistedFaceIds.OrderBy(x => Guid.NewGuid()).FirstOrDefault(); await FaceServiceHelper.DeletePersonFaceAsync(groupId, can.PersonId, persistedFaceId); } try { await FaceServiceHelper.AddPersonFaceAsync(groupId, can.PersonId, await this.GetImageStreamCallback(), "", f.FaceRectangle); } catch (Exception e) { // Catch errors with individual groups so we can continue looping through all groups. Maybe an answer will come from // another one. ErrorTrackingHelper.TrackException(e, "Problem adding face to group"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem adding face to group"); } } } else { //create new Guy if confidence not sufficient SimilarFaceMatch result = await GetSimilarFace(f); //using (var db = new KioskDbContext()) //{ // Blogs.ItemsSource = db.Blogs.ToList(); //} await CreatePerson(facesInfo, newPersonID, f); } break; case 1: fi.can2id = can.PersonId.ToString(); fi.can2conf = can.Confidence; p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId); fi.can2name = p.Name; break; case 2: fi.can3id = can.PersonId.ToString(); fi.can3conf = can.Confidence; p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId); fi.can3name = p.Name; break; case 3: fi.can4id = can.PersonId.ToString(); fi.can4conf = can.Confidence; p = await FaceServiceHelper.GetPersonAsync(groupId, can.PersonId); fi.can4name = p.Name; break; } i++; } } else { //if no candidate we also need to create new person await CreatePerson(facesInfo, newPersonID, f); } try { await FaceServiceHelper.TrainPersonGroupAsync(groupId); } catch (Exception e) { // Catch error with training of group ErrorTrackingHelper.TrackException(e, "Problem training group"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem training group"); } } } } catch (Exception e) { // Catch error with training of group ErrorTrackingHelper.TrackException(e, "Problem with cognitive services"); if (this.ShowDialogOnFaceApiErrors) { await ErrorTrackingHelper.GenericApiCallExceptionHandler(e, "Problem with cognitive services"); } } return(facesInfo); }