コード例 #1
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            List <NetworkResult> nrs = new List <NetworkResult>();

            (IEncoder encoder, IWeightTensor srcEmbedding, List <IFeedForwardLayer> encoderFFLayer, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            var srcSnts            = sntPairBatch.GetSrcTokens(0);
            var originalSrcLengths = BuildInTokens.PadSentences(srcSnts);
            var srcTokensList      = m_modelMetaData.SrcVocab.GetWordIndex(srcSnts);

            IWeightTensor encOutput = Encoder.Run(computeGraph, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, segmentEmbedding, srcTokensList, originalSrcLengths);

            int srcSeqPaddedLen = srcSnts[0].Count;
            int batchSize       = srcSnts.Count;

            float[] clsIdxs = new float[batchSize];
            for (int i = 0; i < batchSize; i++)
            {
                for (int j = 0; j < srcSnts[i].Count; j++)
                {
                    if (srcSnts[i][j] == BuildInTokens.CLS)
                    {
                        clsIdxs[i] = i * srcSeqPaddedLen + j;
                        break;
                    }
                }
            }

            IWeightTensor clsWeightTensor = computeGraph.IndexSelect(encOutput, clsIdxs);

            for (int i = 0; i < m_encoderFFLayer.Length; i++)
            {
                float         cost = 0.0f;
                NetworkResult nr   = new NetworkResult
                {
                    Output = new List <List <List <string> > >()
                };

                IWeightTensor ffLayer = encoderFFLayer[i].Process(clsWeightTensor, batchSize, computeGraph);
                using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        var tgtSnts = sntPairBatch.GetTgtTokens(i);
                        for (int k = 0; k < batchSize; k++)
                        {
                            int   ix_targets_k_j = m_modelMetaData.ClsVocabs[i].GetWordIndex(tgtSnts[k][0]);
                            float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                            cost += (float)-Math.Log(score_k);
                            probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                        }

                        ffLayer.CopyWeightsToGradients(probs);

                        nr.Cost = cost / batchSize;
                    }
                    else
                    {
                        // Output "i"th target word
                        using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                        float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                        List <string> targetWords = m_modelMetaData.ClsVocabs[i].ConvertIdsToString(targetIdx.ToList());
                        nr.Output.Add(new List <List <string> >());

                        for (int k = 0; k < batchSize; k++)
                        {
                            nr.Output[0].Add(new List <string>());
                            nr.Output[0][k].Add(targetWords[k]);
                        }
                    }
                }

                nrs.Add(nr);
            }


            return(nrs);
        }
コード例 #2
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            int batchSize = sntPairBatch.BatchSize;

            float cost = 0.0f;
            var   nrs  = new List <NetworkResult>();
            var   nr   = new NetworkResult {
                Output = new List <List <List <string> > >()
            };

            (IEncoder encoder, IWeightTensor srcEmbedding, IFeedForwardLayer encoderFFLayer, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            IWeightTensor encOutput1;
            IWeightTensor encOutput2;

            if (!isTraining && (m_options.ProcessorType == ProcessorTypeEnums.CPU))
            {
                //We only check cache at inference time
                string cacheKey1 = GenerateCacheKey(sntPairBatch.GetSrcTokens(0));
                if (!m_memoryCache.TryGetValue(cacheKey1, out encOutput1))
                {
                    encOutput1 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 0); // output shape: [batch_size, dim]

                    var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1);
                    m_memoryCache.Set(cacheKey1, encOutput1.CopyWeightsRef($"cache_{encOutput1.Name}", false), cacheEntryOptions);
                }

                string cacheKey2 = GenerateCacheKey(sntPairBatch.GetSrcTokens(1));
                if (!m_memoryCache.TryGetValue(cacheKey2, out encOutput2))
                {
                    encOutput2 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 1); // output_shape: [batch_size, dim]

                    var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1);
                    m_memoryCache.Set(cacheKey2, encOutput2.CopyWeightsRef($"cache_{encOutput2.Name}", false), cacheEntryOptions);
                }
            }
            else
            {
                //We always run encoder network during training time or using GPUs
                encOutput1 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 0); // output shape: [batch_size, dim]
                encOutput2 = Encoder.BuildTensorForSourceTokenGroupAt(computeGraph, sntPairBatch, m_shuffleType, encoder, m_modelMetaData, srcEmbedding, posEmbedding, segmentEmbedding, 1); // output_shape: [batch_size, dim]
            }

            if (m_modelMetaData.SimilarityType.Equals("Continuous", StringComparison.InvariantCultureIgnoreCase))
            {
                // Cosine similairy
                var w12 = computeGraph.EltMul(encOutput1, encOutput2);
                w12 = computeGraph.Sum(w12, 1);
                var w1 = computeGraph.EltMul(encOutput1, encOutput1);
                w1 = computeGraph.Sum(w1, 1);
                var w2 = computeGraph.EltMul(encOutput2, encOutput2);
                w2 = computeGraph.Sum(w2, 1);
                var n12 = computeGraph.EltMul(w1, w2);
                n12 = computeGraph.Rsqrt(n12);
                var probs = computeGraph.EltMul(w12, n12);
                if (isTraining)
                {
                    var tgtSnts = sntPairBatch.GetTgtTokens(0);
                    for (int k = 0; k < batchSize; k++)
                    {
                        float golden_score_k = float.Parse(tgtSnts[k][0]); // Get golden similiary score from target side
                        float score_k        = probs.GetWeightAt(new long[] { k, 0 });

                        probs.SetWeightAt(score_k - golden_score_k, new long[] { k, 0 });
                        cost += (float)Math.Abs(score_k - golden_score_k);
                    }

                    probs.CopyWeightsToGradients(probs);
                    nr.Cost = cost / batchSize;
                }
                else
                {
                    nr.Output.Add(new List <List <string> >());
                    for (int k = 0; k < batchSize; k++)
                    {
                        float score_k = probs.GetWeightAt(new long[] { k, 0 });

                        nr.Output[0].Add(new List <string>());
                        nr.Output[0][k].Add(score_k.ToString());
                    }
                }
            }
            else
            {
                IWeightTensor encOutput = computeGraph.EltMul(encOutput1, encOutput2);
                IWeightTensor ffLayer   = encoderFFLayer.Process(encOutput, batchSize, computeGraph);
                using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
                {
                    if (isTraining)
                    {
                        var tgtSnts = sntPairBatch.GetTgtTokens(0);
                        for (int k = 0; k < batchSize; k++)
                        {
                            int   ix_targets_k_j = m_modelMetaData.ClsVocab.GetWordIndex(tgtSnts[k][0]);
                            float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                            cost += (float)-Math.Log(score_k);
                            probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                        }

                        ffLayer.CopyWeightsToGradients(probs);

                        nr.Cost = cost / batchSize;
                    }
                    else
                    {
                        // Output "i"th target word
                        using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                        float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                        List <string> targetWords = m_modelMetaData.ClsVocab.ConvertIdsToString(targetIdx.ToList());
                        nr.Output.Add(new List <List <string> >());

                        for (int k = 0; k < batchSize; k++)
                        {
                            nr.Output[0].Add(new List <string>());
                            nr.Output[0][k].Add(targetWords[k]);
                        }
                    }
                }
            }


            nrs.Add(nr);

            return(nrs);
        }
コード例 #3
0
        /// <summary>
        /// Run forward part on given single device
        /// </summary>
        /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param>
        /// <param name="srcSnts">A batch of input tokenized sentences in source side</param>
        /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param>
        /// <param name="deviceIdIdx">The index of current device</param>
        /// <returns>The cost of forward part</returns>
        public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions)
        {
            (IEncoder encoder, IDecoder decoder, IFeedForwardLayer encoderFFLayer, IFeedForwardLayer decoderFFLayer, IWeightTensor srcEmbedding, IWeightTensor tgtEmbedding, IWeightTensor posEmbedding, IWeightTensor segmentEmbedding) = GetNetworksOnDeviceAt(deviceIdIdx);

            var srcSnts            = sntPairBatch.GetSrcTokens(0);
            var originalSrcLengths = BuildInTokens.PadSentences(srcSnts);
            var srcTokensList      = m_modelMetaData.SrcVocab.GetWordIndex(srcSnts);

            IWeightTensor encOutput = Encoder.Run(computeGraph, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, segmentEmbedding, srcTokensList, originalSrcLengths);

            List <NetworkResult> nrs = new List <NetworkResult>();
            int srcSeqPaddedLen      = srcSnts[0].Count;
            int batchSize            = srcSnts.Count;

            float[] clsIdxs = new float[batchSize];
            for (int i = 0; i < batchSize; i++)
            {
                for (int j = 0; j < srcSnts[i].Count; j++)
                {
                    if (srcSnts[i][j] == BuildInTokens.CLS)
                    {
                        clsIdxs[i] = i * srcSeqPaddedLen + j;
                        break;
                    }
                }
            }

            IWeightTensor clsWeightTensor = computeGraph.IndexSelect(encOutput, clsIdxs);

            float         cost  = 0.0f;
            NetworkResult nrCLS = new NetworkResult
            {
                Output = new List <List <List <string> > >()
            };

            IWeightTensor ffLayer = encoderFFLayer.Process(clsWeightTensor, batchSize, computeGraph);

            using (IWeightTensor probs = computeGraph.Softmax(ffLayer, runGradients: false, inPlace: true))
            {
                if (isTraining)
                {
                    var clsSnts = sntPairBatch.GetTgtTokens(0);
                    for (int k = 0; k < batchSize; k++)
                    {
                        int   ix_targets_k_j = m_modelMetaData.ClsVocab.GetWordIndex(clsSnts[k][0]);
                        float score_k        = probs.GetWeightAt(new long[] { k, ix_targets_k_j });
                        cost += (float)-Math.Log(score_k);
                        probs.SetWeightAt(score_k - 1, new long[] { k, ix_targets_k_j });
                    }

                    ffLayer.CopyWeightsToGradients(probs);

                    nrCLS.Cost = cost / batchSize;
                }
                else
                {
                    // Output "i"th target word
                    using var targetIdxTensor = computeGraph.Argmax(probs, 1);
                    float[]       targetIdx   = targetIdxTensor.ToWeightArray();
                    List <string> targetWords = m_modelMetaData.ClsVocab.ConvertIdsToString(targetIdx.ToList());
                    nrCLS.Output.Add(new List <List <string> >());

                    for (int k = 0; k < batchSize; k++)
                    {
                        nrCLS.Output[0].Add(new List <string>());
                        nrCLS.Output[0][k].Add(targetWords[k]);
                    }
                }
            }

            // Reset networks
            decoder.Reset(computeGraph.GetWeightFactory(), srcSnts.Count);

            // Generate output decoder sentences
            var tgtSnts       = sntPairBatch.GetTgtTokens(1);
            var tgtTokensList = m_modelMetaData.TgtVocab.GetWordIndex(tgtSnts);

            NetworkResult nr = new NetworkResult();

            if (decoder is AttentionDecoder)
            {
                nr.Cost   = Decoder.DecodeAttentionLSTM(tgtTokensList, computeGraph, encOutput, decoder as AttentionDecoder, decoderFFLayer, tgtEmbedding, m_modelMetaData.TgtVocab, srcSnts.Count, isTraining);
                nr.Output = new List <List <List <string> > >
                {
                    m_modelMetaData.TgtVocab.ConvertIdsToString(tgtTokensList)
                };
            }
            else
            {
                if (isTraining)
                {
                    (var c, _) = Decoder.DecodeTransformer(tgtTokensList, computeGraph, encOutput, decoder as TransformerDecoder, decoderFFLayer, tgtEmbedding, posEmbedding, originalSrcLengths, m_modelMetaData.TgtVocab, m_shuffleType, m_options.DropoutRatio, null, isTraining);
                    nr.Cost    = c;
                    nr.Output  = null;
                }
                else
                {
                    List <List <BeamSearchStatus> > beam2batchStatus = Decoder.InitBeamSearchStatusListList(batchSize, tgtTokensList);
                    for (int i = 0; i < decodingOptions.MaxTgtSentLength; i++)
                    {
                        List <List <BeamSearchStatus> > batch2beam2seq = null; //(batch_size, beam_search_size)
                        try
                        {
                            foreach (var batchStatus in beam2batchStatus)
                            {
                                var batch2tgtTokens = Decoder.ExtractBatchTokens(batchStatus);
                                using var g = computeGraph.CreateSubGraph($"TransformerDecoder_Step_{i}");
                                (var cost2, var bssSeqList) = Decoder.DecodeTransformer(batch2tgtTokens, g, encOutput, decoder as TransformerDecoder, decoderFFLayer, tgtEmbedding, posEmbedding,
                                                                                        originalSrcLengths, m_modelMetaData.TgtVocab, m_shuffleType, 0.0f, decodingOptions, isTraining,
                                                                                        outputSentScore: decodingOptions.BeamSearchSize > 1, previousBeamSearchResults: batchStatus);

                                bssSeqList     = Decoder.SwapBeamAndBatch(bssSeqList);
                                batch2beam2seq = Decoder.CombineBeamSearchResults(batch2beam2seq, bssSeqList);
                            }
                        }
                        catch (OutOfMemoryException)
                        {
                            GC.Collect();
                            Logger.WriteLine(Logger.Level.warn, $"We have out of memory while generating '{i}th' tokens, so terminate decoding for current sequences.");
                            break;
                        }

                        if (decodingOptions.BeamSearchSize > 1)
                        {
                            // Keep top N result and drop all others
                            for (int k = 0; k < batchSize; k++)
                            {
                                batch2beam2seq[k] = BeamSearch.GetTopNBSS(batch2beam2seq[k], decodingOptions.BeamSearchSize);
                            }
                        }


                        beam2batchStatus = Decoder.SwapBeamAndBatch(batch2beam2seq);
                        if (Decoder.AreAllSentsCompleted(beam2batchStatus))
                        {
                            break;
                        }
                    }

                    nr.Cost   = 0.0f;
                    nr.Output = m_modelMetaData.TgtVocab.ExtractTokens(beam2batchStatus);
                }
            }

            nr.RemoveDuplicatedEOS();

            nrs.Add(nrCLS);
            nrs.Add(nr);

            return(nrs);
        }