public VladimirView(Context context) : base(context) { // modelObject2D = new float[modelObject.Length/3*2]; ObjParser model3D = new ObjParser(); List <byte[]> test1 = model3D.ParsedObject(context, "bottle2"); float[] floatArray = new float[test1[0].Length / 4]; System.Buffer.BlockCopy(test1[0], 0, floatArray, 0, (int)test1[0].Length); modelObject = floatArray; }
public GLObject(Renderer renderer, string vertextShader, string fragmentShader, string objFile, string textureImage) { this.renderer = renderer; //Loading vertex and fragment shader source codes from resource files, than compile and link it shader = new Shader(renderer.context, vertextShader, fragmentShader); compileResult = shader.Compile(); List <VBO> VBOs = new ObjParser().GetVBOs(renderer.context, objFile); //Loading vertexes from resource file to VBO vertexVBO = VBOs[0]; //Loading UVMap from resource file to VBO textureVBO = VBOs[1]; //Loading normales from resource file to VBO normalVBO = VBOs[2]; //Loading texture image file texture = new Texture(renderer.context, textureImage); //Ask android to run RAM garbage cleaner System.GC.Collect(); }
public override void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config) { // X, Y, Z, // R, G, B, A float[] triangle1VerticesData = { -0.5f, -0.25f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.5f, -0.25f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.559016994f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f }; List <VBO> VBOs = new ObjParser().GetVBOs(context, "iam"); //Loading vertexes from resource file to VBO vertexVBO = VBOs[0]; //Loading UVMap from resource file to VBO textureVBO = VBOs[1]; //Loading normales from resource file to VBO normalVBO = VBOs[2]; //Loading texture image file texture = new Texture(context, "iam"); //Ask android to run RAM garbage cleaner System.GC.Collect(); mTriangle1Vertices = ByteBuffer.AllocateDirect(triangle1VerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangle1Vertices.Put(triangle1VerticesData).Position(0); GLES20.GlClearColor(1.0f, 1.0f, 1.0f, 1.0f); // Position the eye behind the origin. float eyeX = 0.0f; float eyeY = 0.0f; float eyeZ = 1.5f; // We are looking toward the distance float lookX = 0.0f; float lookY = 0.0f; float lookZ = -5.0f; // Set our up vector. This is where our head would be pointing were we holding the camera. float upX = 0.0f; float upY = 1.0f; float upZ = 0.0f; // Set the view matrix. This matrix can be said to represent the camera position. // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose. Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); string vertexShader = "uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix. + "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in. + "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in. + "varying vec4 v_Color; \n" // This will be passed into the fragment shader. + "void main() \n" // The entry point for our vertex shader. + "{ \n" + " v_Color = a_Color; \n" // Pass the color through to the fragment shader. It will be interpolated across the triangle. + " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position. + " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in normalized screen coordinates. + "} \n"; string fragmentShader = "precision mediump float; \n" // Set the default precision to medium. We don't need as high of a // precision in the fragment shader. + "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the triangle per fragment. + "void main() \n" // The entry point for our fragment shader. + "{ \n" + " gl_FragColor = v_Color; \n" // Pass the color directly through the pipeline. + "} \n"; int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); // Compile the shader. GLES20.GlCompileShader(vertexShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } if (vertexShaderHandle == 0) { throw new Exception("Error creating vertex shader."); } // Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); // Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; } } if (fragmentShaderHandle == 0) { throw new Exception("Error creating fragment shader."); } // Create a program object and store the handle to it. int programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { // Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); // Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); // Bind attributes GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); // Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); // Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); // If the link failed, delete the program. if (linkStatus[0] == 0) { GLES20.GlDeleteProgram(programHandle); programHandle = 0; } } if (programHandle == 0) { throw new Exception("Error creating program."); } // Set program handles. These will later be used to pass in values to the program. mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); // Tell OpenGL to use this program when rendering. GLES20.GlUseProgram(programHandle); }
public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config) { const float coord = 1.0f; ObjParser model3D = new ObjParser(); List <byte[]> test1 = model3D.ParsedObject(context, "buggy"); float[] vertexArray = new float[test1[0].Length / 4]; System.Buffer.BlockCopy(test1[0], 0, vertexArray, 0, (int)test1[0].Length); modelVerticesData = vertexArray; FloatBuffer mTriangleVertices = ByteBuffer.AllocateDirect(modelVerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleVertices.Put(modelVerticesData).Flip(); // Cube colors // R, G, B, A float[] modelColorsData = { 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f }; FloatBuffer mTriangleColors = ByteBuffer.AllocateDirect(modelColorsData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleColors.Put(modelColorsData).Flip(); float[] textureUVMapArray = new float[test1[1].Length / 4]; System.Buffer.BlockCopy(test1[1], 0, textureUVMapArray, 0, (int)test1[1].Length); modelTextureUVMapData = textureUVMapArray; FloatBuffer mTriangleTextureUVMap = ByteBuffer.AllocateDirect(modelTextureUVMapData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer(); mTriangleTextureUVMap.Put(modelTextureUVMapData).Flip(); //Data buffers to VBO GLES20.GlGenBuffers(3, VBOBuffers, 0); //2 buffers for vertices, texture and colors GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[0]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleVertices.Capacity() * mBytesPerFloat, mTriangleVertices, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[1]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleColors.Capacity() * mBytesPerFloat, mTriangleColors, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[2]); GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleTextureUVMap.Capacity() * mBytesPerFloat, mTriangleTextureUVMap, GLES20.GlStaticDraw); GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0); //Load and setup texture GLES20.GlGenTextures(1, textureHandle, 0); //init 1 texture storage handle if (textureHandle[0] != 0) { //Android.Graphics cose class Matrix exists at both Android.Graphics and Android.OpenGL and this is only sample of using Android.Graphics.BitmapFactory.Options options = new Android.Graphics.BitmapFactory.Options(); options.InScaled = false; // No pre-scaling Android.Graphics.Bitmap bitmap = Android.Graphics.BitmapFactory.DecodeResource(context.Resources, Resource.Drawable.iam, options); GLES20.GlBindTexture(GLES20.GlTexture2d, textureHandle[0]); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMinFilter, GLES20.GlNearest); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureMagFilter, GLES20.GlNearest); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapS, GLES20.GlClampToEdge); GLES20.GlTexParameteri(GLES20.GlTexture2d, GLES20.GlTextureWrapT, GLES20.GlClampToEdge); GLUtils.TexImage2D(GLES20.GlTexture2d, 0, bitmap, 0); bitmap.Recycle(); } //Ask android to run RAM garbage cleaner System.GC.Collect(); //Setup OpenGL ES GLES20.GlClearColor(coord, coord, coord, coord); // GLES20.GlEnable(GLES20.GlDepthTest); //uncoment if needs enabled dpeth test GLES20.GlEnable(2884); // GlCullFace == 2884 see OpenGL documentation to this constant value GLES20.GlCullFace(GLES20.GlBack); // Position the eye behind the origin. float eyeX = 0.0f; float eyeY = 0.0f; float eyeZ = 4.5f; // We are looking toward the distance float lookX = 0.0f; float lookY = 0.0f; float lookZ = -5.0f; // Set our up vector. This is where our head would be pointing were we holding the camera. float upX = 0.0f; float upY = coord; float upZ = 0.0f; // Set the view matrix. This matrix can be said to represent the camera position. // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose. Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ); string vertexShader = "uniform mat4 u_MVPMatrix; \n" // A constant representing the combined model/view/projection matrix. + "attribute vec4 a_Position; \n" // Per-vertex position information we will pass in. + "attribute vec4 a_Color; \n" // Per-vertex color information we will pass in. + "varying vec4 v_Color; \n" // This will be passed into the fragment shader. + "attribute vec2 a_TextureCoord; \n" + "varying vec2 v_TextureCoord; \n" + "void main() \n" // The entry point for our vertex shader. + "{ \n" + " v_TextureCoord = a_TextureCoord; \n" // Pass the color through to the fragment shader. It will be interpolated across the triangle. + " v_Color = a_Color; \n" // Pass the color through to the fragment shader. It will be interpolated across the triangle. + " gl_Position = u_MVPMatrix \n" // gl_Position is a special variable used to store the final position. + " * a_Position; \n" // Multiply the vertex by the matrix to get the final point in normalized screen coordinates. + "} \n"; string fragmentShader = "precision mediump float; \n" // Set the default precision to medium. We don't need as high of a // precision in the fragment shader. + "varying vec4 v_Color; \n" // This is the color from the vertex shader interpolated across the triangle per fragment. + "varying vec2 v_TextureCoord; \n" + "uniform sampler2D u_Texture; \n" + "void main() \n" // The entry point for our fragment shader. + "{ \n" + " gl_FragColor = texture2D(u_Texture, v_TextureCoord); \n" // Pass the color directly through the pipeline. + "} \n"; vertexShader = string.Empty; fragmentShader = string.Empty; int resourceId = context.Resources.GetIdentifier("vertexshadervladimir1", "raw", context.PackageName); Stream fileStream = context.Resources.OpenRawResource(resourceId); StreamReader streamReader = new StreamReader(fileStream); string line = string.Empty; while ((line = streamReader.ReadLine()) != null) { vertexShader += line + "\n"; } resourceId = context.Resources.GetIdentifier("fragmentshadervladimir1", "raw", context.PackageName); fileStream = context.Resources.OpenRawResource(resourceId); streamReader = new StreamReader(fileStream); while ((line = streamReader.ReadLine()) != null) { fragmentShader += line + "\n"; } int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader); if (vertexShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(vertexShaderHandle, vertexShader); // Compile the shader. GLES20.GlCompileShader(vertexShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(vertexShaderHandle); vertexShaderHandle = 0; } } if (vertexShaderHandle == 0) { throw new Exception("Error creating vertex shader."); } // Load in the fragment shader shader. int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader); if (fragmentShaderHandle != 0) { // Pass in the shader source. GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader); // Compile the shader. GLES20.GlCompileShader(fragmentShaderHandle); // Get the compilation status. int[] compileStatus = new int[1]; GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0); // If the compilation failed, delete the shader. if (compileStatus[0] == 0) { GLES20.GlDeleteShader(fragmentShaderHandle); fragmentShaderHandle = 0; } } if (fragmentShaderHandle == 0) { throw new Exception("Error creating fragment shader."); } // Create a program object and store the handle to it. int programHandle = GLES20.GlCreateProgram(); if (programHandle != 0) { // Bind the vertex shader to the program. GLES20.GlAttachShader(programHandle, vertexShaderHandle); // Bind the fragment shader to the program. GLES20.GlAttachShader(programHandle, fragmentShaderHandle); // Bind attributes GLES20.GlBindAttribLocation(programHandle, 0, "a_Position"); GLES20.GlBindAttribLocation(programHandle, 1, "a_Color"); GLES20.GlBindAttribLocation(programHandle, 2, "a_TextureCoord"); // Link the two shaders together into a program. GLES20.GlLinkProgram(programHandle); // Get the link status. int[] linkStatus = new int[1]; GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0); // If the link failed, delete the program. if (linkStatus[0] == 0) { GLES20.GlDeleteProgram(programHandle); programHandle = 0; } } if (programHandle == 0) { throw new Exception("Error creating program."); } // Set program handles. These will later be used to pass in values to the program. mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix"); mPositionHandle = GLES20.GlGetAttribLocation(programHandle, "a_Position"); mColorHandle = GLES20.GlGetAttribLocation(programHandle, "a_Color"); mTextureCoordHandle = GLES20.GlGetAttribLocation(programHandle, "a_TextureCoord"); mTextureHandle = GLES20.GlGetUniformLocation(programHandle, "u_Texture"); // Tell OpenGL to use this program when rendering. GLES20.GlUseProgram(programHandle); }