コード例 #1
0
        // finds an estimate on the robots position gradient based on the sonar readings
        public static double[] getGradient(LMMobileRobot thecart, int curOrientation, int prevOrientation)
        {
            double[] gradient = new double[] { 0, 0 };
            double D1x, D2x, D3x, D4x, D5x, D6x;
            double D1y, D2y, D3y, D4y, D5y, D6y;

            double[] Snew = new double[8];
            double[] Sprev = new double[8];
            int i;

            // storing sensor index permutations for both new and previous orientations
            int[] prevPerm = getSensorPermutation(prevOrientation);
            int[] newPerm = getSensorPermutation(curOrientation);

            for (i = 0; i < 8; i++)
            {
                Snew[i] = (double)thecart.SonarArray[newPerm[i]];
                Sprev[i] = (double)thecart.PrevSonarArray[prevPerm[i]];
            }

            // initially applying a Kalman Filter to the measurements
            // a zero-input vector for the process
            double[] U = new double[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] B = new double[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] W0 = new double[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] V0 = new double[] { 2, 2, 2, 2, 2, 2, 2, 2 };

            double[][] A = new double[][] { new double[] { 1, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 1, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 1, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 1, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 1, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 1, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 1, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 1 }
                                            };
            double[][] H = new double[][] { new double[] { 1, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 1, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 1, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 1, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 1, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 1, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 1, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 1 }
                                            };
            double[][] Q = new double[][] { new double[] { 5, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 5, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 5, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 5, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 5, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 5, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 5, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 5 }
                                            };
            double[][] R = new double[][] { new double[] { 2, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 2, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 2, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 2, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 2, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 2, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 2, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 2 }
                                            };
            KalmanFilter filter = new KalmanFilter(8, A, B, W0, H, V0, Q, R, Sprev);

            // retrieving the measurement noise-free estimate by the Kalman filter,
            // in order to use it to calculate the gradient
            double[] Snest = filter.getNewEstimate(Snew, U);

            // computing Gx
            D1x = Sprev[1] * Math.Cos(Math.PI / 4) - Snest[1] * Math.Cos(Math.PI / 4);
            //if (Math.Abs(D1x) > sup) D1x = 0;
            D2x = Sprev[2] - Snest[2];
            //if (Math.Abs(D2x) > sup) D2x = 0;
            D3x = Sprev[3] * Math.Cos(Math.PI / 4) - Snest[3] * Math.Cos(Math.PI / 4);
            //if (Math.Abs(D3x) > sup) D3x = 0;
            D4x = -(Sprev[5] * Math.Cos(Math.PI / 4) - Snest[5] * Math.Cos(Math.PI / 4));
            //if (Math.Abs(D4x) > sup) D4x = 0;
            D5x = -(Sprev[6] - Snest[6]);
            //if (Math.Abs(D5x) > sup) D5x = 0;
            D6x = -(Sprev[7] * Math.Cos(Math.PI / 4) - Snest[7] * Math.Cos(Math.PI / 4));
            //if (Math.Abs(D6x) > sup) D6x = 0;

            gradient[0] = (D1x + D2x + D3x + D4x + D5x + D6x) / 6;

            // computing Gy
            D1y = Sprev[0] - Snest[0];
            //if (Math.Abs(D1y) > sup) D1y = 0;
            D2y = Sprev[1] * Math.Cos(Math.PI / 4) - Snest[1] * Math.Cos(Math.PI / 4);
            //if (Math.Abs(D2y) > sup) D2y = 0;
            D3y = -(Sprev[3] * Math.Cos(Math.PI / 4) - Snest[3] * Math.Cos(Math.PI / 4));
            //if (Math.Abs(D3y) > sup) D3y = 0;
            D4y = -(Sprev[4] - Snest[4]);
            //if (Math.Abs(D4y) > sup) D4y = 0;
            D5y = -(Sprev[5] * Math.Cos(Math.PI / 4) - Snest[5] * Math.Cos(Math.PI / 4));
            //if (Math.Abs(D5y) > sup) D5y = 0;
            D6y = Sprev[7] * Math.Cos(Math.PI / 4) - Snest[7] * Math.Cos(Math.PI / 4);
            //if (Math.Abs(D6y) > sup) D6y = 0;

            gradient[1] = (D1y + D2y + D3y + D4y + D5y + D6y) / 6;

            return gradient;
        }
コード例 #2
0
        private void button135_Click(object sender, EventArgs e)
        {
            double[][] A = new double[][] {new double[] {1, 0},
                                           new double[] {0, 1}
                                            };
            double[] B = new double[] { 0, 0};
            double[] V0 = new double[] { 2, 2};
            double[] W0 = new double[] { 0, 0};
            double[][] H = new double[][] {new double[] {1, 0},
                                           new double[] {0, 1}
                                            };
            double[][] Q = new double[][] { new double[] {5, 0},
                                            new double[] {0, 5}
                                          };
            double[][] R = new double[][] { new double[] {2, 0},
                                            new double[] {0, 2}
                                          };
            double[] Z = new double[] {5, 5};
            double[] Z1 = new double[] {6, 6};
            double[] U = new double[] {0, 0};
            KalmanFilter kalman = new KalmanFilter(2, A, B, W0, H, V0, Q, R, Z);
            double[] est = kalman.getNewEstimate(Z1, U);
            double[] Z2 = new double[] { 5, 5 };
            kalman.getNewEstimate(Z2, U);

            double[][] matrix = new double[][] { new double[] {1, 0, 0},
                                                 new double[] {2, 1, 0},
                                                 new double[] {1, 0, 1}};
            double d = KalmanFilter.getDeterminant(matrix, 3);

            double[][] inv = KalmanFilter.inverseMatrix(matrix, 3);
            double[] Gxy = MappingFSM.getGradient(cart, MappingFSM.orEAST, MappingFSM.orNORTH);
            double acos = MappingFSM.getAngleOffset(cart, MappingFSM.orEAST, MappingFSM.orNORTH);
            double angle = 180*Math.Acos(acos)/Math.PI;

            int test = 1;
        }
コード例 #3
0
        // finds an estimate of the angular offset of the robot (unsigned)
        // after a 90 turn
        public static double getAngleOffset(LMMobileRobot thecart, int curOrientation, int prevOrientation)
        {
            double[] Snew = new double[8];
            double[] Sprev = new double[8];
            int i;

            // storing sensor index permutations for both new and previous orientations
            int[] prevPerm = getSensorPermutation(prevOrientation);
            int[] newPerm = getSensorPermutation(curOrientation);

            for (i = 0; i < 8; i++)
            {
                Snew[i] = (double)thecart.SonarArray[newPerm[i]];
                Sprev[i] = (double)thecart.PrevSonarArray[prevPerm[i]];
            }

            // initially applying a Kalman Filter to the measurements
            // a zero-input vector for the process
            double[] U = new double[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] B = new double[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] W0 = new double[] { 0, 0, 0, 0, 0, 0, 0, 0 };
            double[] V0 = new double[] { 2, 2, 2, 2, 2, 2, 2, 2 };

            double[][] A = new double[][] { new double[] { 1, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 1, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 1, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 1, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 1, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 1, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 1, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 1 }
                                            };
            double[][] H = new double[][] { new double[] { 1, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 1, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 1, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 1, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 1, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 1, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 1, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 1 }
                                            };
            double[][] Q = new double[][] { new double[] { 5, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 5, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 5, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 5, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 5, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 5, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 5, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 5 }
                                            };
            double[][] R = new double[][] { new double[] { 2, 0, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 2, 0, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 2, 0, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 2, 0, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 2, 0, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 2, 0, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 2, 0 },
                                            new double[] { 0, 0, 0, 0, 0, 0, 0, 2 }
                                            };
            KalmanFilter filter = new KalmanFilter(8, A, B, W0, H, V0, Q, R, Sprev);

            // retrieving the measurement noise-free estimate by the Kalman filter,
            // in order to use it to calculate the gradient
            double[] Snest = filter.getNewEstimate(Snew, U);

            // now computing the average cosine of the triangles
            double anglesum = 0;
            int count = 0;
            for (i=0; i<8; i++)
                if (Snest[i] < Snew[i])
                {
                    count++;
                    anglesum += 180*Math.Acos((Snest[i]+11) / (Snew[i]+11))/Math.PI;
                }

            double average = (count == 0) ? 1 : anglesum / count;

            return average;
        }