static void Run(string trainingSet, string testSet) { // step 1: dataset var container = new MovieTweetingsDataContainer(); var reader = new MovieTweetingsReader(trainingSet, testSet); reader.LoadData(container); Console.WriteLine("Data container statistics:\n {0}", container.ToString()); var dataset = new ItemRatingDataset(container); var featureBuilder = new MovieTweetingLibSvmFeatureBuilder(container); // svm parameters var svmParameters = new SvmParameter { SvmType = SvmType.C_SVC, KernelType = KernelType.Linear, CacheSize = 128, C = 1, Eps = 1e-3, Shrinking = true, Probability = false }; // step 2: recommender var labelSelector = new Func <ItemRating, double>(ir => { var t = container.Tweets[ir]; return(((t.RetweetCount + t.FavoriteCount) > 0) ? 1.0 : 0.0); }); var recommender = new LibSvmClassifier(svmParameters, featureBuilder, labelSelector); // step3: evaluation var ep = new EvaluationPipeline <ItemRating>(new EvalutationContext <ItemRating>(recommender, dataset)); ep.Evaluators.Add(new WriteChallengeOutput(container, "test_output.dat")); ep.Run(); }
static void Run(string trainingSet, string testSet) { // step 1: dataset var container = new MovieTweetingsDataContainer(); var reader = new MovieTweetingsReader(trainingSet, testSet); reader.LoadData(container); Console.WriteLine("Data container statistics:\n {0}", container.ToString()); var dataset = new ItemRatingDataset(container); var featureBuilder = new MovieTweetingLibSvmFeatureBuilder(container); // svm parameters var svmParameters = new SvmParameter { SvmType = SvmType.C_SVC, KernelType = KernelType.Linear, CacheSize = 128, C = 1, Eps = 1e-3, Shrinking = true, Probability = false }; // step 2: recommender var labelSelector = new Func<ItemRating, double>(ir => { var t = container.Tweets[ir]; return ((t.RetweetCount + t.FavoriteCount) > 0) ? 1.0 : 0.0; }); var recommender = new LibSvmClassifier(svmParameters, featureBuilder, labelSelector); // step3: evaluation var ep = new EvaluationPipeline<ItemRating>(new EvalutationContext<ItemRating>(recommender, dataset)); ep.Evaluators.Add(new WriteChallengeOutput(container, "test_output.dat")); ep.Run(); }