コード例 #1
0
        /// <summary>
        /// Loads 3d texture data from the specified stream
        /// </summary>
        private static Texture3dData[] Load3dTextureData( BinaryReader reader, TextureFileFormatVersion1.Header header )
        {
            Texture3dData[] textureDataArray = new Texture3dData[ header.TextureDataEntries ];
            for ( int textureDataCount = 0; textureDataCount < header.TextureDataEntries; ++textureDataCount )
            {
                TextureFileFormatVersion1.Group textureGroup = TextureFileFormatVersion1.Group.Read( reader );
                if ( textureGroup.GroupId != GroupIdentifier.Texture3dDataGroup )
                {
                    throw new FileLoadException( "Expected texture group" );
                }

                int width = reader.ReadInt32( );
                int height = reader.ReadInt32( );
                int depth = reader.ReadInt32( );

                Texture3dData texData = new Texture3dData( );
                texData.Create( width, height, depth, header.Format );

                reader.Read( texData.Bytes, 0, texData.Bytes.Length );

                textureDataArray[ textureDataCount ] = texData;
            }

            return textureDataArray;
        }
コード例 #2
0
        //
        //    Discrepancies in atmospheric modelling papers:
        //        - HG:
        //            - Neilsen: HG(t,g) = (1-g2)/(4pi(1 + g2 - 2cos(t))^1.5)
        //            - Wolfram: HG(t,g) = (1-g2)/(1 + g2 - 2.g.cos(t))^1.5
        //            - O'Neil (adapted HG): HG(t,g) = 3(1-g2)/2(2+g2) . (1+t2)/(1+g2 - 2gt)^1.5
        //            - O'Neil and Wolfram work well. Neilsen doesn't (denominator can evalute to < 0 before raising to 3/2 power)
        //    - Scattering coefficients: (# is wavelength)
        //            - Neilsen Rayleigh coefficient: 8pi^2(n2-1)^2/3N#^4
        //            - Neilsen Mie coefficient: 0.434c.pi.4pi^2/#^2K
        //                - K=non-wavelength dependent fudge factor for Bm: ~0.67
        //                - c=concentration factor(0.6544T-0.6510).10e-16 (T=turbidity. ~555nm)
        //
        //
        //
        //
        //    Realtime rendering of atmospheric scattering for flight simulators:
        //        http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/2554/pdf/imm2554.pdf
        //
        //    Display of The Earth Taking into Account Atmospheric Scattering: (Nishita)
        //        http://nis-lab.is.s.u-tokyo.ac.jp/~nis/abs_sig.html#sig93
        //
        //    Implementation of Nishita's paper:
        //        http://www.gamedev.net/reference/articles/article2093.asp
        //
        //    A practical analytical model of daylight:
        //        http://www.cs.utah.edu/vissim/papers/sunsky/sunsky.pdf
        //
        //    Discussion about atmospheric shaders:
        //        http://www.gamedev.net/community/forums/topic.asp?topic_id=335023
        //
        //    Paper that this model is based on:
        //        http://www.vis.uni-stuttgart.de/~schafhts/HomePage/pubs/wscg07-schafhitzel.pdf
        //
        //    Heyney-Greenstein on Mathworld:
        //        http://scienceworld.wolfram.com/physics/Heyney-GreensteinPhaseFunction.html
        //
        /// <summary>
        /// Builds a 3D lookup texture
        /// </summary>
        /// <param name="model">The atmosphere model</param>
        /// <param name="parameters">Parameters for the build process</param>
        /// <param name="progress">Optional progress object</param>
        /// <returns>Returns a 3d texture data. Returns null if cancel was flagged in the progress object</returns>
        public unsafe AtmosphereBuildOutputs Build( AtmosphereBuildModel model, AtmosphereBuildParameters parameters, AtmosphereBuildProgress progress )
        {
            Texture2dData opticalDepthTexture = new Texture2dData( );
            Texture3dData scatteringTexture = new Texture3dData( );
            scatteringTexture.Create( parameters.ViewAngleSamples, parameters.SunAngleSamples, parameters.HeightSamples, TextureFormat.R8G8B8A8 );

            SetupModelAndParameters( parameters, model );
            progress = progress ?? new AtmosphereBuildProgress( );

            fixed ( byte* voxels = scatteringTexture.Bytes )
            {
                if ( !BuildScatteringTexture( parameters, voxels, progress ) )
                {
                    return null;
                }
            }
            if ( progress.Cancel )
            {
                return null;
            }

            opticalDepthTexture.Create( parameters.OpticalDepthResolution, parameters.OpticalDepthResolution, TextureFormat.R8G8B8 );
            fixed ( byte* pixels = opticalDepthTexture.Bytes )
            {
                if ( !BuildOpticalDepthTexture( parameters, pixels, progress ) )
                {
                    return null;
                }
            }

            return new AtmosphereBuildOutputs( scatteringTexture, opticalDepthTexture );
        }