public static void ProtoSaveToFile(object sender, DoWorkEventArgs e) { try { worker = sender as BackgroundWorker; string filename = e.Argument as string; SaveLoadData data = new SaveLoadData(); data.railml = XML.ToXElement <railml>(Data.DataContainer.model).ToString(); data.NN = DataContainer.NeuralNetwork; if (DataContainer.NeuralNetwork.Network != null) { data.network = SerializeNetwork(); } if (DataContainer.NeuralNetwork.Data != null) { data.trainingset = SerializeDataSet(); } MyStream stream = new MyStream(filename, FileMode.Create, FileAccess.Write); stream.ProgressChanged += new ProgressChangedEventHandler(Save_ProgressChanged); Serializer.Serialize(stream, data); stream.Close(); } catch (Exception ex) { MessageBox.Show(ex + " Inner Exception: " + ex.InnerException); worker.ReportProgress(1, ex + " Inner Exception: " + ex.InnerException); } }
public static void LoadFile(object sender, DoWorkEventArgs e) { worker = sender as BackgroundWorker; string filename = e.Argument as string; MyStream stream = new MyStream(filename, FileMode.Open, FileAccess.Read); stream.ProgressChanged += new ProgressChangedEventHandler(Load_ProgressChanged); IFormatter formatter = new BinaryFormatter(); SaveLoadData data = (SaveLoadData)formatter.Deserialize(stream); XElement elem = XElement.Parse(data.railml); DataContainer.model = XML.FromXElement <railml>(elem); DataContainer.NeuralNetwork = data.NN; stream.Close(); }
public static void SaveToFile(object sender, DoWorkEventArgs e) { worker = sender as BackgroundWorker; string filename = e.Argument as string; SaveLoadData data = new SaveLoadData(); data.railml = XML.ToXElement <railml>(Data.DataContainer.model).ToString(); data.NN = DataContainer.NeuralNetwork; MyStream stream = new MyStream(filename, FileMode.Create, FileAccess.Write); stream.ProgressChanged += new ProgressChangedEventHandler(Save_ProgressChanged); IFormatter formatter = new BinaryFormatter(); formatter.Serialize(stream, data); stream.Close(); }
public static void ProtoLoadFile(object sender, DoWorkEventArgs e) { worker = sender as BackgroundWorker; string filename = e.Argument as string; MyStream stream = new MyStream(filename, FileMode.Open, FileAccess.Read); stream.ProgressChanged += new ProgressChangedEventHandler(Load_ProgressChanged); SaveLoadData data = Serializer.Deserialize <SaveLoadData>(stream); XElement elem = XElement.Parse(data.railml); DataContainer.model = XML.FromXElement <railml>(elem); DataContainer.NeuralNetwork = data.NN; if (data.trainingset != null) { DataContainer.NeuralNetwork.Data = DeserializeDataSet(data.trainingset); } if (data.network != null) { DataContainer.NeuralNetwork.Network = DeserializeNetwork(data.network); } stream.Close(); }
public static void SaveToFile(object sender, DoWorkEventArgs e ) { worker = sender as BackgroundWorker; string filename = e.Argument as string; SaveLoadData data = new SaveLoadData(); data.railml = XML.ToXElement<railml>(Data.DataContainer.model).ToString(); data.NN = DataContainer.NeuralNetwork; MyStream stream = new MyStream(filename, FileMode.Create, FileAccess.Write); stream.ProgressChanged += new ProgressChangedEventHandler(Save_ProgressChanged); IFormatter formatter = new BinaryFormatter(); formatter.Serialize(stream, data); stream.Close(); }
public static void ProtoSaveToFile(object sender, DoWorkEventArgs e) { try { worker = sender as BackgroundWorker; string filename = e.Argument as string; SaveLoadData data = new SaveLoadData(); data.railml = XML.ToXElement<railml>(Data.DataContainer.model).ToString(); data.NN = DataContainer.NeuralNetwork; if (DataContainer.NeuralNetwork.Network != null) { data.network = SerializeNetwork(); } if (DataContainer.NeuralNetwork.Data != null) { data.trainingset = SerializeDataSet(); } MyStream stream = new MyStream(filename, FileMode.Create, FileAccess.Write); stream.ProgressChanged += new ProgressChangedEventHandler(Save_ProgressChanged); Serializer.Serialize(stream, data); stream.Close(); } catch(Exception ex) { MessageBox.Show(ex + " Inner Exception: " + ex.InnerException); worker.ReportProgress(1, ex + " Inner Exception: " + ex.InnerException); } }
public static void ProtoLoadFile(object sender, DoWorkEventArgs e) { worker = sender as BackgroundWorker; string filename = e.Argument as string; MyStream stream = new MyStream(filename, FileMode.Open, FileAccess.Read); stream.ProgressChanged += new ProgressChangedEventHandler(Load_ProgressChanged); SaveLoadData data = Serializer.Deserialize<SaveLoadData>(stream); XElement elem = XElement.Parse(data.railml); DataContainer.model = XML.FromXElement<railml>(elem); DataContainer.NeuralNetwork = data.NN; if (data.trainingset != null) { DataContainer.NeuralNetwork.Data = DeserializeDataSet(data.trainingset); } if (data.network != null) { DataContainer.NeuralNetwork.Network = DeserializeNetwork(data.network); } stream.Close(); }
public static void LoadFile(object sender, DoWorkEventArgs e) { worker = sender as BackgroundWorker; string filename = e.Argument as string; MyStream stream = new MyStream(filename, FileMode.Open, FileAccess.Read); stream.ProgressChanged += new ProgressChangedEventHandler(Load_ProgressChanged); IFormatter formatter = new BinaryFormatter(); SaveLoadData data = (SaveLoadData)formatter.Deserialize(stream); XElement elem = XElement.Parse(data.railml); DataContainer.model = XML.FromXElement<railml>(elem); DataContainer.NeuralNetwork = data.NN; stream.Close(); }