コード例 #1
0
        new int linearProgram2(IList <Line> lines, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            if (!directionOpt)
            {
                /*
                 * Optimize direction. Note that the optimization velocity is of unit
                 * length in this case.
                 */
                result = optVelocity * radius;
            }
            else if (Vector2.absSq(optVelocity) > Vector2.sqr(radius))
            {
                /* Optimize closest point and outside circle. */
                result = Vector2.normalize(optVelocity) * radius;
            }
            else
            {
                /* Optimize closest point and inside circle. */
                result = optVelocity;
            }



            for (int i = 0; i < lines.Count; ++i)
            {
                if (Vector2.det(lines[i].direction, lines[i].point - result) > 0.0f)
                {
                    /* Result does not satisfy constraint i. Compute new optimal result. */
                    Vector2 tempResult = result;
                    if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, ref result))
                    {
                        result = tempResult;

                        return(i);
                    }
                }
            }

            return(lines.Count);
        }
コード例 #2
0
        public override void interactWith(SuperAgent agent)
        {
            SuperAgent other = agent;

            Vector2 relativePosition = other.position_ - position_;
            Vector2 relativeVelocity = velocity_ - other.velocity_;
            float   distSq           = (float)Math.Round(Vector2.absSq(relativePosition), 3);
            float   combinedRadius   = radius_ + other.radius_;
            float   combinedRadiusSq = (float)Math.Round(Vector2.sqr(combinedRadius), 3);
            Vector2 w    = new Vector2();
            Line    line = new Line();
            Vector2 u;

            if (distSq > combinedRadiusSq)
            {
                /* No collision. */
                w = relativeVelocity - (1.0f / timeHorizon_) * relativePosition;

                /* Vector from cutoff center to relative velocity. */
                float   wLengthSq = Vector2.absSq(w);
                Vector2 unitW     = new Vector2();

                float dotProduct1 = w * relativePosition;
                if (dotProduct1 < 0.0f && Vector2.sqr(dotProduct1) > combinedRadiusSq * wLengthSq)
                {
                    /* Project on cut-off circle. */
                    float wLength = (float)Math.Round(Math.Sqrt(wLengthSq), 3);
                    unitW          = w / wLength;
                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    u = (combinedRadius * (1.0f / timeHorizon_) - wLength) * unitW;
                }
                else
                {
                    /* Project on legs. */
                    float leg = (float)Math.Round(Math.Sqrt(distSq - combinedRadiusSq), 3);
                    if (Vector2.det(relativePosition, w) > 0.0f)
                    {
                        /* Project on left leg. */
                        line.direction = new Vector2(relativePosition.x() * leg - relativePosition.y() * combinedRadius, relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
                    }
                    else
                    {
                        /* Project on right leg. */
                        line.direction = -new Vector2(relativePosition.x() * leg + relativePosition.y() * combinedRadius, -relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
                    }

                    float dotProduct2 = (float)Math.Round(relativeVelocity * line.direction, 3);
                    u = dotProduct2 * line.direction - relativeVelocity;
                }
            }
            else
            {
                /* Collision. Project on cut-off circle of time timeStep. */
                float invTimeStep = (float)Math.Round(1.0f / sim_.getTimeStep(), 3);

                /* Vector from cutoff center to relative velocity. */
                w = relativeVelocity - invTimeStep * relativePosition;

                float   wLength = (float)Math.Round(Vector2.abs(w), 3);
                Vector2 unitW   = w / wLength;

                line.direction = new Vector2(unitW.y(), -unitW.x());
                u = (combinedRadius * invTimeStep - wLength) * unitW;
            }
            // This is where you can choose the proportion of responsabilities that each agents takes in avoiding collision
            line.point = velocity_ + 0.5f * u;
            orcaLines_.Add(line);
        }
コード例 #3
0
        new public bool linearProgram1(IList <Line> lines, int lineNo, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            float dotProduct   = lines[lineNo].point * lines[lineNo].direction;
            float discriminant = Vector2.sqr(dotProduct) + Vector2.sqr(radius) - Vector2.absSq(lines[lineNo].point);

            if (discriminant < 0.0f)
            {
                /* Max speed circle fully invalidates line lineNo. */
                return(false);
            }

            float sqrtDiscriminant = (float)Math.Sqrt(discriminant);
            float tLeft            = -dotProduct - sqrtDiscriminant;
            float tRight           = -dotProduct + sqrtDiscriminant;

            ;
            for (int i = 0; i < lineNo; ++i)
            {
                float denominator = Vector2.det(lines[lineNo].direction, lines[i].direction);
                float numerator   = Vector2.det(lines[i].direction, lines[lineNo].point - lines[i].point);

                if (Math.Abs(denominator) <= RVO_EPSILON)
                {
                    /* Lines lineNo and i are (almost) parallel. */
                    if (numerator < 0.0f)
                    {
                        return(false);
                    }
                    else
                    {
                        continue;
                    }
                }


                float t = numerator / denominator;
                if (denominator >= 0.0f)
                {
                    /* Line i bounds line lineNo on the right. */
                    tRight = Math.Min(tRight, t);
                }
                else
                {
                    /* Line i bounds line lineNo on the left. */
                    tLeft = Math.Max(tLeft, t);
                }

                if (tLeft > tRight)
                {
                    return(false);
                }
            }
            if (!directionOpt)
            {
                /* Optimize direction. */
                if (optVelocity * lines[lineNo].direction > 0.0f)
                {
                    /* Take right extreme. */
                    result = lines[lineNo].point + tRight * lines[lineNo].direction;
                }
                else
                {
                    /* Take left extreme. */
                    result = lines[lineNo].point + tLeft * lines[lineNo].direction;
                }
            }
            else
            {
                /* Optimize closest point. */
                float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point);

                if (t < tLeft)
                {
                    result = lines[lineNo].point + tLeft * lines[lineNo].direction;
                }
                else if (t > tRight)
                {
                    result = lines[lineNo].point + tRight * lines[lineNo].direction;
                }
                else
                {
                    result = lines[lineNo].point + t * lines[lineNo].direction;
                }
            }
            return(true);
        }
コード例 #4
0
        public override void interactWith(Obstacle obstacle)

        {
            Obstacle obstacle1 = obstacle;
            Obstacle obstacle2 = obstacle1.next_;

            Vector2 relativePosition1 = obstacle1.point_ - position_;
            Vector2 relativePosition2 = obstacle2.point_ - position_;

            /*
             * Check if velocity obstacle of obstacle is already taken care of by
             * previously constructed obstacle ORCA lines.
             */
            bool alreadyCovered = false;

            for (int j = 0; j < orcaLines_.Count; ++j)
            {
                if (Vector2.det((1.0f / timeHorizonObst_) * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - (1.0f / timeHorizonObst_) * radius_ >= -RVO_EPSILON &&
                    Vector2.det((1.0f / timeHorizonObst_) * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - (1.0f / timeHorizonObst_) * radius_ >= -RVO_EPSILON)
                {
                    alreadyCovered = true;
                    break;
                }
            }

            if (alreadyCovered)
            {
                return;
            }

            /* Not yet covered. Check for collisions. */

            float distSq1 = Vector2.absSq(relativePosition1);
            float distSq2 = Vector2.absSq(relativePosition2);

            float radiusSq = Vector2.sqr(radius_);

            Vector2 obstacleVector = obstacle2.point_ - obstacle1.point_;
            float   s          = (-relativePosition1 * obstacleVector) / Vector2.absSq(obstacleVector);
            float   distSqLine = Vector2.absSq(-relativePosition1 - s * obstacleVector);

            Line line;

            if (s < 0 && distSq1 <= radiusSq)
            {
                /* Collision with left vertex. Ignore if non-convex. */
                if (obstacle1.convex_)
                {
                    line.point     = new Vector2(0, 0);
                    line.direction = Vector2.normalize(new Vector2(-relativePosition1.y(), relativePosition1.x()));
                    orcaLines_.Add(line);
                }
                return;
            }
            else if (s > 1 && distSq2 <= radiusSq)
            {
                /* Collision with right vertex. Ignore if non-convex
                 * or if it will be taken care of by neighoring obstace */
                if (obstacle2.convex_ && Vector2.det(relativePosition2, obstacle2.direction_) >= 0)
                {
                    line.point     = new Vector2(0, 0);
                    line.direction = Vector2.normalize(new Vector2(-relativePosition2.y(), relativePosition2.x()));
                    orcaLines_.Add(line);
                }
                return;
            }
            else if (s >= 0 && s < 1 && distSqLine <= radiusSq)
            {
                /* Collision with obstacle segment. */
                line.point     = new Vector2(0, 0);
                line.direction = -obstacle1.direction_;
                orcaLines_.Add(line);
                return;
            }

            /*
             * No collision.
             * Compute legs. When obliquely viewed, both legs can come from a single
             * vertex. Legs extend cut-off line when nonconvex vertex.
             */

            Vector2 leftLegDirection, rightLegDirection;

            if (s < 0 && distSqLine <= radiusSq)
            {
                /*
                 * Obstacle viewed obliquely so that left vertex
                 * defines velocity obstacle.
                 */
                if (!obstacle1.convex_)
                {
                    /* Ignore obstacle. */
                    return;
                }

                obstacle2 = obstacle1;

                float leg1 = (float)Math.Sqrt(distSq1 - radiusSq);
                leftLegDirection  = new Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                rightLegDirection = new Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
            }
            else if (s > 1 && distSqLine <= radiusSq)
            {
                /*
                 * Obstacle viewed obliquely so that
                 * right vertex defines velocity obstacle.
                 */
                if (!obstacle2.convex_)
                {
                    /* Ignore obstacle. */
                    return;
                }

                obstacle1 = obstacle2;

                float leg2 = (float)Math.Sqrt(distSq2 - radiusSq);
                leftLegDirection  = new Vector2(relativePosition2.x() * leg2 - relativePosition2.y() * radius_, relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                rightLegDirection = new Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
            }
            else
            {
                /* Usual situation. */
                if (obstacle1.convex_)
                {
                    float leg1 = (float)Math.Sqrt(distSq1 - radiusSq);
                    leftLegDirection = new Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                }
                else
                {
                    /* Left vertex non-convex; left leg extends cut-off line. */
                    leftLegDirection = -obstacle1.direction_;
                }

                if (obstacle2.convex_)
                {
                    float leg2 = (float)Math.Sqrt(distSq2 - radiusSq);
                    rightLegDirection = new Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                }
                else
                {
                    /* Right vertex non-convex; right leg extends cut-off line. */
                    rightLegDirection = obstacle1.direction_;
                }
            }

            /*
             * Legs can never point into neighboring edge when convex vertex,
             * take cutoff-line of neighboring edge instead. If velocity projected on
             * "foreign" leg, no constraint is added.
             */

            Obstacle leftNeighbor = obstacle1.previous_;

            bool isLeftLegForeign  = false;
            bool isRightLegForeign = false;


            if (obstacle.convex_ && Vector2.det(leftLegDirection, -leftNeighbor.direction_) >= 0.0f)
            {
                /* Left leg points into obstacle. */
                leftLegDirection = -leftNeighbor.direction_;
                isLeftLegForeign = true;
            }

            if (obstacle2.convex_ && Vector2.det(rightLegDirection, obstacle2.direction_) <= 0.0f)
            {
                /* Right leg points into obstacle. */
                rightLegDirection = obstacle2.direction_;
                isRightLegForeign = true;
            }

            /* Compute cut-off centers. */
            Vector2 leftCutoff  = (1.0f / timeHorizonObst_) * (obstacle1.point_ - position_);
            Vector2 rightCutoff = (1.0f / timeHorizonObst_) * (obstacle2.point_ - position_);
            Vector2 cutoffVec   = rightCutoff - leftCutoff;

            /* Project current velocity on velocity obstacle. */

            /* Check if current velocity is projected on cutoff circles. */
            float t      = (obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutoff) * cutoffVec) / Vector2.absSq(cutoffVec));
            float tLeft  = ((velocity_ - leftCutoff) * leftLegDirection);
            float tRight = ((velocity_ - rightCutoff) * rightLegDirection);

            if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))
            {
                /* Project on left cut-off circle. */
                Vector2 unitW = Vector2.normalize(velocity_ - leftCutoff);

                line.direction = new Vector2(unitW.y(), -unitW.x());
                line.point     = leftCutoff + radius_ * (1.0f / timeHorizonObst_) * unitW;
                orcaLines_.Add(line);
                return;
            }
            else if (t > 1.0f && tRight < 0.0f)
            {
                /* Project on right cut-off circle. */
                Vector2 unitW = Vector2.normalize(velocity_ - rightCutoff);

                line.direction = new Vector2(unitW.y(), -unitW.x());
                line.point     = rightCutoff + radius_ * (1.0f / timeHorizonObst_) * unitW;
                orcaLines_.Add(line);
                return;
            }

            /*
             * Project on left leg, right leg, or cut-off line, whichever is closest
             * to velocity.
             */
            float distSqCutoff = ((t <0.0f || t> 1.0f || obstacle1 == obstacle2) ? Single.PositiveInfinity : Vector2.absSq(velocity_ - (leftCutoff + t * cutoffVec)));
            float distSqLeft   = ((tLeft < 0.0f) ? Single.PositiveInfinity : Vector2.absSq(velocity_ - (leftCutoff + tLeft * leftLegDirection)));
            float distSqRight  = ((tRight < 0.0f) ? Single.PositiveInfinity : Vector2.absSq(velocity_ - (rightCutoff + tRight * rightLegDirection)));

            if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight)
            {
                /* Project on cut-off line. */
                line.direction = -obstacle1.direction_;
                line.point     = leftCutoff + radius_ * (1.0f / timeHorizonObst_) * new Vector2(-line.direction.y(), line.direction.x());
                orcaLines_.Add(line);
                return;
            }
            else if (distSqLeft <= distSqRight)
            {
                /* Project on left leg. */
                if (isLeftLegForeign)
                {
                    return;
                }

                line.direction = leftLegDirection;
                line.point     = leftCutoff + radius_ * (1.0f / timeHorizonObst_) * new Vector2(-line.direction.y(), line.direction.x());
                orcaLines_.Add(line);
                return;
            }
            else
            {
                /* Project on right leg. */
                if (isRightLegForeign)
                {
                    return;
                }

                line.direction = -rightLegDirection;
                line.point     = rightCutoff + radius_ * (1.0f / timeHorizonObst_) * new Vector2(-line.direction.y(), line.direction.x());
                orcaLines_.Add(line);
                return;
            }
        }
コード例 #5
0
ファイル: Samuel.cs プロジェクト: Killy85/RVO2_Simulator
        // Update is called once per frame
        void Update()
        {
            for (int block = 0; block < workers.Count; ++block)
            {
                doneEvents_[block].Reset();
                ThreadPool.QueueUserWorkItem(workers[block].clear);
            }

            WaitHandle.WaitAll(doneEvents_);
            updateWorker(workers.Count);
            if (!reachedGoal())
            {
                if (hum_but_.isOn && !human_prefab)
                {
                    int range = agents.Count;
                    for (int i = 0; i < range; i++)
                    {
                        Destroy(agents[i].gameObject);
                        addAgent(human, agents[i].position, sim_.getDefaultRadius(), i);
                    }
                    human_prefab = true;
                }
                else if (!hum_but_.isOn && human_prefab)
                {
                    int range = agents.Count;
                    for (int i = 0; i < range; i++)
                    {
                        Destroy(agents[i].gameObject);
                        addAgent(prefab, agents[i].position, sim_.getDefaultRadius(), i);
                    }
                    human_prefab = false;
                }
                setAgentsProperties();
                setPreferredVelocities();

                sim_.initialize_virtual_and_agents();
                for (int i = 0; i < getNumAgents(); i++)
                {
                    Vector2 agent_position = sim_.getAgentPosition(i);
                    Vector2 p1             = agent_position + new Vector2(corridor_length_, 0);
                    sim_.addVirtualAgent(0, p1);
                }
                doStep(true);

                /* Output the current global time. */
                //print(Simulator.Instance.getGlobalTime());

                if (follow_but_.isOn != follow_)
                {
                    follow_ = follow_but_.isOn;

                    for (int i = 0; i < getNumAgents(); ++i)
                    {
                        sim_.agents_[i].follows_ = follow_;
                    }
                }
                if (save_but_.isOn != sim_.save)
                {
                    sim_.save = save_but_.isOn;
                }

                Vector3 pos3 = Camera.main.transform.position;
                Camera.main.transform.position = new Vector3(pos3.x, camera_height_.value, pos3.z);

                int totot = getNumAgents();
                for (int i = 0; i < getNumAgents(); ++i)
                {
                    Vector2 position = sim_.getAgentPosition(i);
                    agents[i].transform.position = new Vector3(position.x(), 0f, position.y());
                    RVO.Vector2 vector2 = sim_.getAgentVelocity(i);
                    agents[i].rotation = Quaternion.LookRotation(new Vector3(vector2.x_, 0, vector2.y_));
                    if (human_prefab)
                    {
                        if (Vector2.absSq(sim_.getAgentVelocity(i) * 4) > 1.5f)
                        {
                            agents[i].GetComponent <Animator>().CrossFade("mixamo.com", 10, 1);
                        }

                        agents[i].GetComponent <Animator>().speed = Vector2.absSq(sim_.getAgentVelocity(i) * 4);
                    }
                    if (!human_prefab)
                    {
                        setColor(i);
                    }
                }
            }
            else
            {
                for (int i = 0; i < getNumAgents(); ++i)
                {
                    agents[i].transform.GetComponent <Rigidbody>().isKinematic = true;
                }
            }

            for (int block = 0; block < workers.Count; ++block)
            {
                doneEvents_[block].Reset();
                ThreadPool.QueueUserWorkItem(workers[block].computeMedVelocity);
            }

            WaitHandle.WaitAll(doneEvents_);

            String tmp = "";

            for (int i = 0; i < workers.Count; i++)
            {
                tmp += Vector2.abs(workers[i].vit_moy) + "\t";
            }
            using (TextWriter tw = new StreamWriter(name, true))
            {
                tw.WriteLine(tmp);
            }
        }
コード例 #6
0
ファイル: GroupAgent.cs プロジェクト: Killy85/RVO2_Simulator
        internal SuperAgent representGroup(Agent observer)
        {
            // Compute the left & right tangent points obtained for each agent of the group
            // First element of the pair = right tangent
            // Second element of the pair = left tangent
            IList <Pair <Vector2, Vector2> > tangents = new List <Pair <Vector2, Vector2> >();
            IList <Pair <Vector2, Vector2> > radii    = new List <Pair <Vector2, Vector2> >();

            for (int i = 0; i < agents_.Count; i++)
            {
                tangents.Add(computeTangentsPoints(observer, agents_[i]));
                Pair <Vector2, Vector2> rads = new Pair <Vector2, Vector2>();
                rads.First  = tangents[i].First - observer.position_;
                rads.Second = tangents[i].Second - observer.position_;
                radii.Add(rads);
            }
            // Compute the group tangent points (extrema)
            int rightExtremumId = 0;
            int leftExtremumId  = 0;

            for (int i = 1; i < tangents.Count; i++)
            {
                // Comparison
                if (Vector2.isOnTheLeftSide(radii[rightExtremumId].First, radii[i].First))
                {
                    rightExtremumId = i;
                }
                if (Vector2.isOnTheLeftSide(radii[i].Second, radii[leftExtremumId].Second))
                {
                    leftExtremumId = i;
                }
            }
            // If the tangent are taking more than 180°, cannot be considered as a group
            for (int i = 0; i < agents_.Count; i++)
            {
                if (Vector2.isOnTheLeftSide(radii[rightExtremumId].First, radii[i].First))
                {
                    //std::cout << "Problem representing groups : tangent angle > 180°\n";
                    return(new SuperAgent(null));
                }
                if (Vector2.isOnTheLeftSide(radii[i].Second, radii[leftExtremumId].Second))
                {
                    //std::cout << "Problem representing groups : tangent angle > 180°\n";
                    return(new SuperAgent(null));
                }
            }
            // Compute bisector
            Vector2 rightTangent      = Vector2.rotation(radii[rightExtremumId].First, (float)Math.PI / 2);
            Vector2 leftTangent       = Vector2.rotation(radii[leftExtremumId].Second, -(float)Math.PI / 2);
            Vector2 intersectionPoint = Vector2.intersectOf2Lines(tangents[rightExtremumId].First, tangents[rightExtremumId].First + rightTangent,
                                                                  tangents[leftExtremumId].Second, tangents[leftExtremumId].Second + leftTangent);
            // alpha/2 is more usefull than alpha
            float alpha2 = Vector2.angle(Vector2.rotation(tangents[leftExtremumId].Second - intersectionPoint, -Vector2.angle(tangents[rightExtremumId].First - intersectionPoint))) / 2;

            if (alpha2 < 0)
            {
                //std::cout << "Problem representing groups : angle computation\n SHALL NOT HAPPEN !!! \n";
                // But if radii are different or if
                return(new SuperAgent(null));
            }
            Vector2 bisector_normalize_vector = Vector2.normalize(observer.position_ - intersectionPoint);
            // Compute circle
            // The distance between the observer and the circle (along the bisector axis)
            float d = Single.PositiveInfinity;
            float a, b, c, delta, x;
            int   constrainingAgent = 0;

            for (int i = 0; i < agents_.Count; i++)
            {
                Vector2 ic1 = agents_[i].position_ - intersectionPoint;
                a     = 1 - Vector2.sqr((float)Math.Sin(alpha2));
                b     = 2 * (agents_[i].radius_ * (float)Math.Sin(alpha2) - ic1 * bisector_normalize_vector);
                c     = Vector2.absSq(ic1) - Vector2.sqr(agents_[i].radius_);
                delta = Vector2.sqr(b) - 4 * a * c;
                if (delta <= 0)
                {
                    if (delta < -4 * RVO_EPSILON * c)
                    {
                        return(new SuperAgent(null));
                    }
                    else
                    {
                        delta = 0;
                    }
                }
                x = (-b + (float)Math.Sqrt(delta)) / (2 * a);
                if (x < d)
                {
                    d = x;
                    constrainingAgent = i;
                }
            }
            if (d < Vector2.abs(observer.position_ - intersectionPoint) + observer.radius_ + d * Math.Sin(alpha2))
            {
                return(new SuperAgent(null));
            }
            SuperAgent toReturn     = new SuperAgent(sim_);

            toReturn.position_ = intersectionPoint + bisector_normalize_vector * d;
            toReturn.radius_   = d * (float)Math.Sin(alpha2);
            toReturn.velocity_ = agents_[constrainingAgent].velocity_;
            return(toReturn);
        }